Home / IB DP Maths / Application and Interpretation HL / IB Mathematics AI AHL Geometric transformations MAI Study Notes

IB Mathematics AI AHL Geometric transformations MAI Study Notes- New Syllabus

IB Mathematics AI AHL Geometric transformations MAI Study Notes

LEARNING OBJECTIVE

  • Geometric transformations of points in two dimensions using matrices:

Key Concepts: 

  • Geometric transformations
  • Compositions of the transformations. 
  • Determinant of a Transformation Matrix

MAI HL and SL Notes – All topics

 TRANSFORMATION MATRICES

A transformation matrix is a 2 × 2 matrix that linearly transforms a point $P(x, y)$ in the plane to a new point $P'(x’, y’)$. The transformation is represented using matrix multiplication:

If

$
M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$

is the transformation matrix, and

$
P = \begin{pmatrix} x \\ y \end{pmatrix}
$

is a point, then the transformed point $P’$ is:

$
P’ = M \cdot P = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}
$

So the coordinates of the image point are:

$
x’ = ax + by, \quad y’ = cx + dy
$

This operation shows how a matrix transforms a point using linear combinations of its components.

Example

Let the transformation matrix be

$
M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
$

Transform the point

$
A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$

▶️Answer/Explanation

Solution:

$
M \cdot A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 + 2 \\ 3 + 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 7 \end{pmatrix}
$

So the point $A(1, 1)$ is mapped to $A'(3, 7)$.

In general, for any point $\begin{pmatrix} x \\ y \end{pmatrix}$, the transformation becomes:

$
\begin{pmatrix} x’ \\ y’ \end{pmatrix} = \begin{pmatrix} x + 2y \\ 3x + 4y \end{pmatrix}
$

Using this matrix, we can find the images of several points:

$O(0, 0) \rightarrow O'(0, 0)$
$A(1, 1) \rightarrow A'(3, 7)$
$B(-1, 2) \rightarrow B'(3, 5)$

This transformation maps shapes as well as individual points.

For example:

The line through $O(0, 0)$ and $A(1, 1)$ is mapped to the line through $O'(0, 0)$ and $A'(3, 7)$.

The triangle $OAB$ with vertices $O(0, 0)$, $A(1, 1)$, and $B(-1, 2)$ is mapped to the triangle $O’A’B’$ with vertices $O'(0, 0)$, $A'(3, 7)$, and $B'(3, 5)$.

BASIC TRANSFORMATION MATRICES

BASIC TRANSFORMATION MATRICES
TransformationMatrix
Horizontal stretch by scale factor \( k \)\( \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \)
Vertical stretch by scale factor \( k \)\( \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \)
Enlargement by scale factor \( k \), center at \( (0, 0) \)\( \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \)
Rotation anticlockwise by angle \( \theta \) about origin\( \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \)
Rotation clockwise by angle \( \theta \) about origin\( \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \)
Reflection in line \( y = mx \), where \( m = \tan \theta \)\( \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} \)

Example

The matrix 

\( A = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \) 

maps 

\(\begin{pmatrix} x \\ y \end{pmatrix}\) to \(\begin{pmatrix} 3x \\ y \end{pmatrix}\).

▶️Answer/Explanation

Solution:

$
\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3x \\ y \end{pmatrix}
$
Thus, it stretches each point horizontally with a scale factor of 3. It also stretches any shape horizontally with a scale factor of 3. For example, it maps the triangle \( OAB \) with vertices \( O(0, 0) \), \( A(2, 0) \), \( B(1, 1) \) to the triangle \( O’A’B’ \) with vertices \( O'(0, 0) \), \( A'(6, 0) \), \( B'(3, 1) \).

Example

Consider the triangle \( OAB \) with \( O(0, 0) \), \( A(2, 0) \), \( B(1, 1) \).

The image of the triangle under the following transformations is shown below:

1. Vertical stretch with a scale factor of 2:

2. Enlargement with a scale factor of 2, center \( (0, 0) \):

3. Clockwise rotation of \( 90^\circ \) about the origin:

4. Reflection in the line \( y = x \) (\( m = \tan 45^\circ = 1 \)):

▶️Answer/Explanation

Solution:

Consider the triangle \( OAB \) with \( O(0, 0) \), \( A(2, 0) \), \( B(1, 1) \).

The image of the triangle under the following transformations is shown below:

1. Vertical stretch with a scale factor of 2:
$
M = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}
$
Maps:
$
O(0, 0) \mapsto O'(0, 0), \quad A(2, 0) \mapsto A'(2, 0), \quad B(1, 1) \mapsto B'(1, 2)
$

2. Enlargement with a scale factor of 2, center \( (0, 0) \):
$
M = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}
$
Maps:
$
O(0, 0) \mapsto O'(0, 0), \quad A(2, 0) \mapsto A'(4, 0), \quad B(1, 1) \mapsto B'(2, 2)
$

3. Clockwise rotation of \( 90^\circ \) about the origin:
$
M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
$
Maps:
$
O(0, 0) \mapsto O'(0, 0), \quad A(2, 0) \mapsto A'(0, -2), \quad B(1, 1) \mapsto B'(1, -1)
$

4. Reflection in the line \( y = x \) (\( m = \tan 45^\circ = 1 \)):
$
M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$
Maps:
$
O(0, 0) \mapsto O'(0, 0), \quad A(2, 0) \mapsto A'(0, 2), \quad B(1, 1) \mapsto B'(1, 1)
$

COMPOSITION OF TRANSFORMATIONS

COMPOSITION OF TRANSFORMATIONS 

The composition of transformations refers to applying two or more transformations in sequence. If transformation $A$ is represented by matrix $M_1$, and transformation $B$ is represented by matrix $M_2$, then the combined transformation is represented by the matrix product $M_2 M_1$. This means that $M_1$ is applied first, followed by $M_2$.

In general, if:

$
\text{Point } P \xrightarrow{M_1} P’ \xrightarrow{M_2} P”
$

then the overall transformation is:

$
P \xrightarrow{M_2 M_1} P”
$

If a vector \(\begin{pmatrix} x \\ y \end{pmatrix}\) is transformed:

First by matrix \( A \),
Then by matrix \( B \),
Then by matrix \( C \),

we obtain:

$
\begin{pmatrix} x \\ y \end{pmatrix} \mapsto A \begin{pmatrix} x \\ y \end{pmatrix} \mapsto BA \begin{pmatrix} x \\ y \end{pmatrix} \mapsto CBA \begin{pmatrix} x \\ y \end{pmatrix}
$

Hence, the composition of the three transformations can be achieved by the product of the three matrices (in the reverse order).

Example

\(\begin{pmatrix} x \\ y \end{pmatrix}\) 

be transformed by:

1. A horizontal stretch with a scale factor of 3:
2. A clockwise rotation of angle \( \theta = 90^\circ \):

▶️Answer/Explanation

Solution:

1. A horizontal stretch with a scale factor of 3:
$
A = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}
$
2. A clockwise rotation of angle \( \theta = 90^\circ \):
$
B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
$

$
\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3x \\ y \end{pmatrix}
$
and then:
$
\begin{pmatrix} 3x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 3x \\ y \end{pmatrix} = \begin{pmatrix} y \\ -3x \end{pmatrix}
$

We obtain the same result by applying the transformation matrix:
$
BA = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -3 & 0 \end{pmatrix}
$
Indeed:
$
\begin{pmatrix} 0 & 1 \\ -3 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ -3x \end{pmatrix}
$

In general, the composition of \( n \) transformations with matrices \( A_1, A_2, \ldots, A_n \) can be achieved by the product of matrices \( A_n \cdots A_2 A_1 \).

AN INTERESTING PROPERTY OF THE DETERMINANT

AN INTERESTING PROPERTY OF THE DETERMINANT

Suppose that a transformation matrix \( M \) maps a closed shape \( S \) to a new shape \( S’ \). Then:

$
\text{Area of } S’ = |\det M| \times \text{Area of } S
$

Example

Consider again the triangle OAB with O(0,0), A(2,0), B(1,1). , the original triangle \( OAB \) has area 1.

1. Vertical stretch:

2. Enlargement:

3. Clockwise rotation \( 90^\circ \):

4. Reflection in \( y = x \):

▶️Answer/Explanation

Solution:

1. Vertical stretch:
$
M = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad \det M = 2 \\
\text{Area of image} = 2
$

2. Enlargement:
$
M = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad \det M = 4 \\
\text{Area of image} = 4
$

3. Clockwise rotation \( 90^\circ \):
$
M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \det M = 1 \\
\text{Area of image} = 1
$

4. Reflection in \( y = x \):
$
M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \det M = -1 \\
\text{Area of image} = 1
$

Scroll to Top