IB Mathematics AI AHL Geometric transformations MAI Study Notes- New Syllabus
IB Mathematics AI AHL Geometric transformations MAI Study Notes
LEARNING OBJECTIVE
- Geometric transformations of points in two dimensions using matrices:
Key Concepts:
- Geometric transformations
- Compositions of the transformations.
- Determinant of a Transformation Matrix
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 3
TRANSFORMATION MATRICES
A transformation matrix is a 2 × 2 matrix that linearly transforms a point $P(x, y)$ in the plane to a new point $P'(x’, y’)$. The transformation is represented using matrix multiplication:
If
$
M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$
is the transformation matrix, and
$
P = \begin{pmatrix} x \\ y \end{pmatrix}
$
is a point, then the transformed point $P’$ is:
$
P’ = M \cdot P = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}
$
So the coordinates of the image point are:
$
x’ = ax + by, \quad y’ = cx + dy
$
This operation shows how a matrix transforms a point using linear combinations of its components.
Example Let the transformation matrix be $ Transform the point $ ▶️Answer/ExplanationSolution: $ So the point $A(1, 1)$ is mapped to $A'(3, 7)$. |
In general, for any point $\begin{pmatrix} x \\ y \end{pmatrix}$, the transformation becomes:
$
\begin{pmatrix} x’ \\ y’ \end{pmatrix} = \begin{pmatrix} x + 2y \\ 3x + 4y \end{pmatrix}
$
Using this matrix, we can find the images of several points:
$O(0, 0) \rightarrow O'(0, 0)$
$A(1, 1) \rightarrow A'(3, 7)$
$B(-1, 2) \rightarrow B'(3, 5)$
This transformation maps shapes as well as individual points.
For example:
The line through $O(0, 0)$ and $A(1, 1)$ is mapped to the line through $O'(0, 0)$ and $A'(3, 7)$.
The triangle $OAB$ with vertices $O(0, 0)$, $A(1, 1)$, and $B(-1, 2)$ is mapped to the triangle $O’A’B’$ with vertices $O'(0, 0)$, $A'(3, 7)$, and $B'(3, 5)$.
BASIC TRANSFORMATION MATRICES
Transformation | Matrix |
---|---|
Horizontal stretch by scale factor \( k \) | \( \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \) |
Vertical stretch by scale factor \( k \) | \( \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \) |
Enlargement by scale factor \( k \), center at \( (0, 0) \) | \( \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \) |
Rotation anticlockwise by angle \( \theta \) about origin | \( \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \) |
Rotation clockwise by angle \( \theta \) about origin | \( \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \) |
Reflection in line \( y = mx \), where \( m = \tan \theta \) | \( \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} \) |
Example The matrix \( A = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \) maps \(\begin{pmatrix} x \\ y \end{pmatrix}\) to \(\begin{pmatrix} 3x \\ y \end{pmatrix}\). ▶️Answer/ExplanationSolution: $ |
Example Consider the triangle \( OAB \) with \( O(0, 0) \), \( A(2, 0) \), \( B(1, 1) \). The image of the triangle under the following transformations is shown below: 1. Vertical stretch with a scale factor of 2: 2. Enlargement with a scale factor of 2, center \( (0, 0) \): 3. Clockwise rotation of \( 90^\circ \) about the origin: 4. Reflection in the line \( y = x \) (\( m = \tan 45^\circ = 1 \)): ▶️Answer/ExplanationSolution: Consider the triangle \( OAB \) with \( O(0, 0) \), \( A(2, 0) \), \( B(1, 1) \). The image of the triangle under the following transformations is shown below: 1. Vertical stretch with a scale factor of 2: 2. Enlargement with a scale factor of 2, center \( (0, 0) \): 3. Clockwise rotation of \( 90^\circ \) about the origin: 4. Reflection in the line \( y = x \) (\( m = \tan 45^\circ = 1 \)): |
COMPOSITION OF TRANSFORMATIONS
COMPOSITION OF TRANSFORMATIONS
The composition of transformations refers to applying two or more transformations in sequence. If transformation $A$ is represented by matrix $M_1$, and transformation $B$ is represented by matrix $M_2$, then the combined transformation is represented by the matrix product $M_2 M_1$. This means that $M_1$ is applied first, followed by $M_2$.
In general, if:
$
\text{Point } P \xrightarrow{M_1} P’ \xrightarrow{M_2} P”
$
then the overall transformation is:
$
P \xrightarrow{M_2 M_1} P”
$
If a vector \(\begin{pmatrix} x \\ y \end{pmatrix}\) is transformed:
First by matrix \( A \),
Then by matrix \( B \),
Then by matrix \( C \),
we obtain:
$
\begin{pmatrix} x \\ y \end{pmatrix} \mapsto A \begin{pmatrix} x \\ y \end{pmatrix} \mapsto BA \begin{pmatrix} x \\ y \end{pmatrix} \mapsto CBA \begin{pmatrix} x \\ y \end{pmatrix}
$
Hence, the composition of the three transformations can be achieved by the product of the three matrices (in the reverse order).
Example \(\begin{pmatrix} x \\ y \end{pmatrix}\) be transformed by: 1. A horizontal stretch with a scale factor of 3: ▶️Answer/ExplanationSolution: 1. A horizontal stretch with a scale factor of 3: $ We obtain the same result by applying the transformation matrix: In general, the composition of \( n \) transformations with matrices \( A_1, A_2, \ldots, A_n \) can be achieved by the product of matrices \( A_n \cdots A_2 A_1 \). |
AN INTERESTING PROPERTY OF THE DETERMINANT
AN INTERESTING PROPERTY OF THE DETERMINANT
Suppose that a transformation matrix \( M \) maps a closed shape \( S \) to a new shape \( S’ \). Then:
$
\text{Area of } S’ = |\det M| \times \text{Area of } S
$
Example Consider again the triangle OAB with O(0,0), A(2,0), B(1,1). , the original triangle \( OAB \) has area 1. 1. Vertical stretch: 2. Enlargement: 3. Clockwise rotation \( 90^\circ \): 4. Reflection in \( y = x \): ▶️Answer/ExplanationSolution: 1. Vertical stretch: 2. Enlargement: 3. Clockwise rotation \( 90^\circ \): 4. Reflection in \( y = x \): |