IB Mathematics AI AHL Composite functions f∘g MAI Study Notes - New Syllabus
IB Mathematics AI AHL Composite functions f∘g MAI Study Notes
LEARNING OBJECTIVE
- Composite functions in context.
Key Concepts:
- Composite & Inverse Functions
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 3
COMPOSITION OF FUNCTIONS: fog
◆ Consider the function \( f(x) = x^2 \).
Notice that:
\( f(5) = 5^2 \)
\( f(a) = a^2 \)
\( f(3a + 5) = (3a + 5)^2 \)
\( f(3x + 5) = (3x + 5)^2 \)
In the last case, the input value for \( f \) is another function of \( x \). This combines two functions:
\( f(x) = x^2 \)
\( g(x) = 3x + 5 \)
to create a new function \( y = (3x + 5)^2 \). This new function is denoted by \( fog \).
◆ DEFINITION
For two functions \( f \) and \( g \), the composite function \( fog \) is defined by:
$ (fog)(x) = f(g(x))$
The operation is called composition. We say \( fog \) is the composite function of \( f \) and \( g \).
Example:
For \( f(x) = x^2 \) and \( g(x) = 3x + 5 \):
$ (fog)(x) = f(g(x)) = f(3x + 5) = (3x + 5)^2 $
Similarly, the composite function \( gof \) is:
$ (gof)(x) = g(f(x)) = g(x^2) = 3x^2 + 5 $
Notice:
\( fog \neq gof \).
No need to expand; just plug \( g \) into \( f \) for \( fog \), and vice versa for \( gof \).
For three functions \( f(x) = x^2 \), \( g(x) = 3x + 5 \), \( h(x) = \sqrt{x} \):
$ (fogoh)(x) = f(g(h(x))) = f(3\sqrt{x} + 5) = (3\sqrt{x} + 5)^2 $
This shows \( (fogoh) = (fog)oh \).
Example Let \( f(x) = 2x^2 – 1 \) and \( g(x) = x + 1 \). Find: ▶️Answer/ExplanationSolution: (a) \( (fog)(x) = 2(x + 1)^2 – 1 \) Alternatively: |
Example Let \( f(x) = \frac{x + 1}{2} \) and \( g(x) = \sqrt{x} \). Find: ▶️Answer/ExplanationSolution: (a) \( (fog)(x) = \frac{\sqrt{x} + 1}{2} \) |
◆ THE IDENTITY FUNCTION \( i(x) \)
It maps \( x \) to itself:
$ i(x) = x \quad \text{or} \quad i: x \mapsto x $
Properties:
\( (foi)(x) = f(x) \)
\( (iof)(x) = f(x) \)
◆ COMPOSITION IN REAL LIFE PROBLEMS
Example:
The area of a square of side \( a \) is \( A = a^2 \).
For a square of side \( 2b + 3 \), the area is \( (2b + 3)^2 \).
Here:
\( f(x) = x^2 \)
\( g(x) = 2x + 3 \)
\( (fog)(x) = (2x + 3)^2 \)
Example Temperature conversions: ▶️Answer/ExplanationSolution: Combining: This is analogous to: |
THE INVERSE FUNCTION: \( f^{-1} \)
◆ DEFINITION
For \( f: \mathbb{R} \rightarrow \mathbb{R} \), the inverse function \( f^{-1} \) satisfies:
$ f(x) = y \iff f^{-1}(y) = x $
Steps to find \( f^{-1} \):
1. Set \( f(x) = y \).
2. Solve for \( x \).
3. Replace \( y \) with \( x \).
Example:
For \( f(x) = x + 10 \):
1. \( x + 10 = y \)
2. \( x = y – 10 \)
3. \( f^{-1}(x) = x – 10 \)
Properties:
\( (f^{-1})^{-1} = f \)
\( D_{f^{-1}} = R_f \) and \( R_{f^{-1}} = D_f \)
\( (fof^{-1})(x) = x \) and \( (f^{-1}of)(x) = x \)
Example Let \( f(x) = 2x^2 – 1 \) (\( x \geq 0 \)). Find: ▶️Answer/ExplanationSolution: (a) (b) \( f^{-1}(49) = 5 \). |
Example Let \( f(x) = \frac{x + 1}{x + 2} \). ▶️Answer/ExplanationSolution: (a) Solve \( \frac{x + 1}{x + 2} = y \) to get \( x = \frac{2y – 1}{1 – y} \). |
Example Let \( f(x) = 1 – 2x \) and \( g(x) = \frac{1}{x} \). Find: ▶️Answer/ExplanationSolution: (a) \( (fog)(x) = 1 – \frac{2}{x} \) Notice: |