Home / IB DP Maths / Application and Interpretation HL / IB Mathematics AI AHL Transformations of graphs MAI Study Notes

IB Mathematics AI AHL Transformations of graphs MAI Study Notes - New Syllabus

IB Mathematics AI AHL Transformations of graphs MAI Study Notes

LEARNING OBJECTIVE

  • Transformations of graphs.

Key Concepts: 

  • Translations of Graphs
  • Reflections of Graphs
  • Stretches of Graphs
  • Composite Transformations of Graphs

MAI HL and SL Notes – All topics

TRANSFORMATIONS OF FUNCTIONS

◆ BASIC TRANSFORMATIONS
Consider \( f(x) \).

Vertical Transformations:
\( f(x) + a \): Shift \( a \) units up.
 \( f(x) – a \): Shift \( a \) units down.
\( bf(x) \): Vertical stretch by factor \( b \).
\( \frac{f(x)}{b} \): Vertical shrink by factor \( \frac{1}{b} \).
\( -f(x) \): Reflection over \( x \)-axis.

 

Horizontal Transformations:
 \( f(x + a) \): Shift \( a \) units left.
\( f(x – a) \): Shift \( a \) units right.
\( f(bx) \): Horizontal shrink by factor \( \frac{1}{b} \).
 \( f\left(\frac{x}{b}\right) \): Horizontal stretch by factor \( b \).
\( f(-x) \): Reflection over \( y \)-axis.

Example

For \( f(x) = x^2 \):
\( f(x + 2) = ?\)
\( f(2x) =? \) 

▶️Answer/Explanation

Solution:

For \( f(x) = x^2 \):
\( f(x + 2) = (x + 2)^2 \) shifts left by 2.
\( f(2x) = (2x)^2 \) shrinks horizontally.

◆ INVERSE FUNCTION TRANSFORMATION
The graph of \( f^{-1} \) is the reflection of \( f \) over \( y = x \). 

Example

For \( f(x) = x^2 \) (\( x \geq 0 \)) , \( f^{-1}(x) = \sqrt{x} \).

▶️Answer/Explanation

Solution:

The image of the point A(2,4) is A΄(4,2).

ASYMPTOTES

Vertical Asymptote: \( x = a \) where \( f(x) \) is undefined.
Horizontal Asymptote: \( y = b \) as \( x \rightarrow \pm \infty \). 

Example

\( f(x) = \frac{1}{x} \):

 \( g(x) = \frac{1}{x – 1} + 2 \):

▶️Answer/Explanation

Solution:

For \( f(x) = \frac{1}{x} \):
Vertical asymptote: \( x = 0 \).
Horizontal asymptote: \( y = 0 \).

For \( g(x) = \frac{1}{x – 1} + 2 \):
Vertical asymptote: \( x = 1 \).
 Horizontal asymptote: \( y = 2 \).

Scroll to Top