Home / IIT- JEE / IIT-JEE Main / Unit 10- Distance, section, and midpoint formulas- Study Notes

IIT JEE Main Maths -Unit 10- Distance, section, and midpoint formulas- Study Notes-New Syllabus

IIT JEE Main Maths -Unit 10- Distance, section, and midpoint formulas – Study Notes – New syllabus

IIT JEE Main Maths -Unit 10- Distance, section, and midpoint formulas – Study Notes -IIT JEE Main Maths – per latest Syllabus.

Key Concepts:

  • Distance, Section and Midpoint Formulas

IIT JEE Main Maths -Study Notes – All Topics

Distance, Section and Midpoint Formulas

These three formulas form the foundation of coordinate geometry and are used repeatedly in Straight Lines, Circles, Conic Sections, and 3D Geometry as well.

Distance Formula

If two points are \( P(x_1, y_1) \) and \( Q(x_2, y_2) \), then distance:

\( PQ = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2} \)

Special cases:

  • Horizontal line: distance = \( |x_2 – x_1| \)
  • Vertical line: distance = \( |y_2 – y_1| \)

Example 

Find the distance between \( (1, 2) \) and \( (4, 6) \).

▶️ Answer / Explanation

\( PQ = \sqrt{(4 – 1)^2 + (6 – 2)^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \)

Answer: 5

Example 

Find the distance between \( A(3,-1) \) and \( B(-5,7) \).

▶️ Answer / Explanation

\( AB = \sqrt{(-5 – 3)^2 + (7 – (-1))^2} \)

\( = \sqrt{(-8)^2 + (8)^2} = \sqrt{64 + 64} = \sqrt{128} = 8\sqrt{2} \)

Answer: \( 8\sqrt{2} \)

Example 

The points \( P(2, k) \) and \( Q(-1, 5) \) are at a distance 5. Find possible values of \( k \).

▶️ Answer / Explanation

\( \sqrt{(-1 – 2)^2 + (5 – k)^2} = 5 \)

\( \sqrt{9 + (5 – k)^2} = 5 \)

Square both sides: \( 9 + (5 – k)^2 = 25 \)

\( (5 – k)^2 = 16 \)

\( 5 – k = \pm 4 \)

So \( k = 1 \) or \( k = 9 \)

Answer: \( k = 1,\ 9 \)

Midpoint Formula

If a point \( M \) divides line segment joining \( A(x_1, y_1) \) and \( B(x_2, y_2) \) in the middle, then:

\( M\left( \dfrac{x_1 + x_2}{2},\ \dfrac{y_1 + y_2}{2} \right) \)

Used frequently in geometry problems, locus questions, and coordinate proofs.

Example 

Find the midpoint of \( (2, 3) \) and \( (6, 7) \).

▶️ Answer / Explanation

\( M = \left( \dfrac{2+6}{2},\ \dfrac{3+7}{2} \right) = (4, 5) \)

Answer: (4, 5)

Example 

The midpoint of \( A(4,2) \) and \( B(x,8) \) is \( M(7,5) \). Find \( x \).

▶️ Answer / Explanation

Midpoint x-coordinate: \( \dfrac{4 + x}{2} = 7 \Rightarrow 4 + x = 14 \Rightarrow x = 10 \)

Answer: \( x = 10 \)

Example

If the midpoint of points \( (p,3) \) and \( (9,q) \) is \( (4,7) \), find \( p \) and \( q \).

▶️ Answer / Explanation

For x-coordinate: \( \dfrac{p + 9}{2} = 4 \Rightarrow p + 9 = 8 \Rightarrow p = -1 \)

For y-coordinate: \( \dfrac{3 + q}{2} = 7 \Rightarrow 3 + q = 14 \Rightarrow q = 11 \)

Answer: \( p = -1,\ q = 11 \)

 Section Formula (Internal & External Division)

Section formula gives the coordinates of a point dividing a line in a given ratio.

(A) Internal Division

If point \( P \) divides \( A(x_1, y_1) \) and \( B(x_2, y_2) \) in ratio \( m:n \) internally:

\( P\left( \dfrac{mx_2 + nx_1}{m + n},\ \dfrac{my_2 + ny_1}{m + n} \right) \)

(B) External Division

If point \( P \) divides externally:

\( P\left( \dfrac{mx_2 – nx_1}{m – n},\ \dfrac{my_2 – ny_1}{m – n} \right) \)

External division appears in JEE locus questions.

Example 

Find the point dividing \( (2,4) \) and \( (10,8) \) in ratio \( 1:1 \) internally.

▶️ Answer / Explanation

Ratio 1:1 → midpoint

\( P = \left( \dfrac{2+10}{2},\ \dfrac{4+8}{2} \right) = (6,6) \)

Answer: (6, 6)

Example 

A point divides the line joining \( A(4, -2) \) and \( B(10, 6) \) in the ratio \( 2:1 \) internally. Find the coordinates.

▶️ Answer / Explanation

\( P = \left( \dfrac{2(10) + 1(4)}{3},\ \dfrac{2(6) + 1(-2)}{3} \right) \)

\( = \left( \dfrac{24}{3},\ \dfrac{10}{3} \right) = (8,\ \dfrac{10}{3}) \)

Answer: \( (8,\ \dfrac{10}{3}) \)

Example 

Find the point that divides the line joining \( (3,7) \) and \( (11,-1) \) in ratio \( 3:5 \) externally.

▶️ Answer / Explanation

Use external formula:

\( P = \left( \dfrac{3(11) – 5(3)}{3 – 5},\ \dfrac{3(-1) – 5(7)}{3 – 5} \right) \)

\( = \left( \dfrac{33 – 15}{-2},\ \dfrac{-3 – 35}{-2} \right) \)

\( = \left( \dfrac{18}{-2},\ \dfrac{-38}{-2} \right) = (-9,\ 19) \)

Answer: \( (-9,\ 19) \)

Scroll to Top