Home / IIT- JEE / IIT-JEE Main / Unit 10- Tangent and normal equations- Study Notes

IIT JEE Main Maths -Unit 10- Tangent and normal equations- Study Notes-New Syllabus

IIT JEE Main Maths -Unit 10- Tangent and normal equations – Study Notes – New syllabus

IIT JEE Main Maths -Unit 10- Tangent and normal equations – Study Notes -IIT JEE Main Maths – per latest Syllabus.

Key Concepts:

  • Ellipse: Equation of Tangent
  • Ellipse: Equation of Normal

IIT JEE Main Maths -Study Notes – All Topics

Ellipse: Equation of Tangent

For the standard ellipse:

\( \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 \)

There are three important forms of tangent: point form, parametric form, and slope form.

1. Tangent at a Point on Ellipse (Point Form)

If \( (x_1, y_1) \) lies on the ellipse, then equation of tangent is:

\( \dfrac{xx_1}{a^2} + \dfrac{yy_1}{b^2} = 1 \)

This is obtained by replacing:

  • \( x^2 \to xx_1 \)
  • \( y^2 \to yy_1 \)

This is the most used formula for JEE.

2. Tangent in Parametric Form

The parametric point on ellipse is:

\( (x_1, y_1) = (a\cos\theta,\ b\sin\theta) \)

Substituting in point form gives tangent:

\( \dfrac{x\cos\theta}{a} + \dfrac{y\sin\theta}{b} = 1 \)

This form is very useful in advanced JEE locus/geometry questions.

3. Tangent in Slope Form

If tangent has slope \( m \), then its equation is:

\( y = mx \pm \sqrt{a^2 m^2 + b^2} \)

Condition: All real values of slope \( m \) give a valid tangent because ellipse is a closed shape.

4. Condition of Tangency (General Line)

If line is:

\( y = mx + c \)

It is tangent to ellipse iff:

\( c^2 = a^2 m^2 + b^2 \)

This is extremely important for JEE MCQs.

5. Tangent to Vertical Ellipse

For ellipse:

\( \dfrac{x^2}{b^2} + \dfrac{y^2}{a^2} = 1 \)

Tangent at \( (x_1, y_1) \):

\( \dfrac{xx_1}{b^2} + \dfrac{yy_1}{a^2} = 1 \)

6. Special Tangents

  • At Vertex (±a,0): equation is \( x = ±a \)
  • At Co-vertex (0,±b): equation is \( y = ±b \)
  • At parametric θ: \( \dfrac{x\cos\theta}{a} + \dfrac{y\sin\theta}{b} =1 \)

Example 

Find tangent to ellipse \( \dfrac{x^2}{16} + \dfrac{y^2}{9} = 1 \) at point \( (4,\dfrac{3\sqrt{3}}{2}) \).

▶️ Answer / Explanation

Using point form:

\( \dfrac{xx_1}{a^2} + \dfrac{yy_1}{b^2} = 1 \)

Here \( a^2 = 16,\ b^2 = 9 \)

\( \dfrac{x\cdot 4}{16} + \dfrac{y(\frac{3\sqrt{3}}{2})}{9} = 1 \)

Simplify:

\( \dfrac{x}{4} + \dfrac{y\sqrt{3}}{6} = 1 \)

Answer: \( \dfrac{x}{4} + \dfrac{y\sqrt{3}}{6} = 1 \)

Example 

Find the tangent to ellipse \( \dfrac{x^2}{25} + \dfrac{y^2}{9} = 1 \) in parametric form for \( \theta = \dfrac{\pi}{3} \).

▶️ Answer / Explanation

Tangent in parametric form:

\( \dfrac{x\cos\theta}{a} + \dfrac{y\sin\theta}{b} = 1 \)

Here \( a = 5,\ b = 3 \).

Substitute \( \theta = \pi/3 \):

\( \cos\theta = \dfrac{1}{2},\ \sin\theta = \dfrac{\sqrt{3}}{2} \)

\( \dfrac{x\cdot \frac{1}{2}}{5} + \dfrac{y\cdot \frac{\sqrt{3}}{2}}{3} = 1 \)

Simplify:

\( \dfrac{x}{10} + \dfrac{y\sqrt{3}}{6} = 1 \)

Answer: \( \dfrac{x}{10} + \dfrac{y\sqrt{3}}{6} = 1 \)

Example

Find the equation of tangent to ellipse \( \dfrac{x^2}{9} + \dfrac{y^2}{4} = 1 \) having slope \( m = 2 \).

▶️ Answer / Explanation

Slope form of tangent:

\( y = mx \pm \sqrt{a^2 m^2 + b^2} \)

Here \( a = 3,\ b = 2,\ m = 2 \)

\( \sqrt{a^2 m^2 + b^2} = \sqrt{9\cdot 4 + 4} = \sqrt{40} = 2\sqrt{10} \)

Thus tangents:

\( y = 2x \pm 2\sqrt{10} \)

Answer: \( y = 2x + 2\sqrt{10} \) and \( y = 2x – 2\sqrt{10} \)

Ellipse: Equation of Normal

For the standard ellipse:

\( \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 \)

The normal at a point on the ellipse is the line perpendicular to the tangent at that point.

1. Normal at a Point on Ellipse (Point Form)

If point \( (x_1,y_1) \) lies on ellipse, then slope of tangent is:

\( m_t = -\dfrac{b^2 x_1}{a^2 y_1} \)

So slope of normal is the negative reciprocal:

\( m_n = \dfrac{a^2 y_1}{b^2 x_1} \)

Normal equation:

\( y – y_1 = \dfrac{a^2 y_1}{b^2 x_1}(x – x_1) \)

2. Normal in Parametric Form (Most Important for JEE)

Parametric point on ellipse:

\( (x_1,y_1)=(a\cos\theta,\ b\sin\theta) \)

Normal at this point is:

\( a x \sec\theta – b y \csc\theta = a^2 – b^2 \)

This is the most powerful and frequently used normal equation for ellipse.

3. Normal in Slope Form

If normal has slope \( m \), then the point of contact satisfies:

\( \tan\theta = -\dfrac{b^2}{a^2 m} \)

Using parametric substitution, the normal equation becomes:

\( y = mx \pm \sqrt{a^2 + b^2 m^2} \)

Used mainly in locus questions.

4. Number of Normals from a Point (Important Theory)

  • From an external point, three normals can be drawn to an ellipse.
  • From a point on the director circle, exactly two normals exist.
  • From a point on the ellipse, exactly one normal exists.

5. Key Identities

  • If the normal at parametric point \( \theta \) meets the major axis at right angle → special locus problems.
  • Normals are important in reflection and optical properties of ellipses.

Example 

Find equation of normal to ellipse \( \dfrac{x^2}{16}+\dfrac{y^2}{4}=1 \) at point \( (4,\sqrt{3}) \).

▶️ Answer / Explanation

Here \( a=4,\ b=2 \).

Normal slope:

\( m_n=\dfrac{a^2 y_1}{b^2 x_1} =\dfrac{16\cdot \sqrt{3}}{4\cdot 4} = \dfrac{\sqrt{3}}{1} \)

Normal equation:

\( y-\sqrt{3}= \sqrt{3}(x-4) \)

Answer: \( y = \sqrt{3}x – 3\sqrt{3} \)

Example 

Find the normal in parametric form for ellipse \( \dfrac{x^2}{25}+\dfrac{y^2}{9}=1 \) at point corresponding to \( \theta = \dfrac{\pi}{6} \).

▶️ Answer / Explanation

Normal equation:

\( a x \sec\theta – b y \csc\theta = a^2 – b^2 \)

Here \( a=5,\ b=3 \).

\( \sec(\pi/6)=\dfrac{2}{\sqrt{3}},\quad \csc(\pi/6)=2 \)

Plug in values:

\( 5x\cdot\dfrac{2}{\sqrt{3}} – 3y\cdot 2 = 25 – 9 \)

\( \dfrac{10x}{\sqrt{3}} – 6y = 16 \)

Answer: \( \dfrac{10x}{\sqrt{3}} – 6y = 16 \)

Example 

Find all normals drawn from point \( (10,0) \) to the ellipse \( \dfrac{x^2}{9}+\dfrac{y^2}{4}=1. \)

▶️ Answer / Explanation

Use general normal in parametric form:

\( a x \sec\theta – b y \csc\theta = a^2 – b^2 \)

Here \( a=3,\ b=2 \), and the point \( (10,0) \) must satisfy:

\( 3\cdot 10 \sec\theta – 2\cdot 0 \csc\theta = 9 – 4 \)

\( 30\sec\theta = 5 \)

\( \sec\theta = \dfrac{1}{6} \)

Impossible for real \( \theta \) (since |secθ| ≥ 1).

Therefore, no real normal exists from (10,0) to the ellipse.

Scroll to Top