Home / IIT- JEE / IIT-JEE Main / Unit 14- Basic Trigonometric Definitions and Ratios- Study Notes

IIT JEE Main Maths -Unit 14- Basic Trigonometric Definitions and Ratios- Study Notes-New Syllabus

IIT JEE Main Maths -Unit 14- Basic Trigonometric Definitions and Ratios – Study Notes – New syllabus

IIT JEE Main Maths -Unit 14- Basic Trigonometric Definitions and Ratios – Study Notes -IIT JEE Main Maths – per latest Syllabus.

Key Concepts:

  • Basic Trigonometric Definitions and Ratios
  • Trigonometric Standard Angles

IIT JEE Main Maths -Study Notes – All Topics

Basic Trigonometric Definitions and Ratios

Trigonometry begins with defining six fundamental ratios based on a right angled triangle. These ratios relate the angles of a triangle to the lengths of its sides. These definitions form the foundation for all advanced trigonometry used in JEE.

 Reference Triangle

Consider a right angled triangle with angle \( \theta \) and the sides relative to \( \theta \):

 

Six Trigonometric Ratios

The six trigonometric ratios for angle \( \theta \) are:

RatioDefinition
\( \sin\theta \)\( \dfrac{\text{Perpendicular}}{\text{Hypotenuse}} \)
\( \cos\theta \)\( \dfrac{\text{Base}}{\text{Hypotenuse}} \)
\( \tan\theta \)\( \dfrac{\text{Perpendicular}}{\text{Base}} \)
\( \cot\theta \)\( \dfrac{\text{Base}}{\text{Perpendicular}} \)
\( \sec\theta \)\( \dfrac{\text{Hypotenuse}}{\text{Base}} \)
\( \csc\theta \)\( \dfrac{\text{Hypotenuse}}{\text{Perpendicular}} \)

 Reciprocal Relations

\( \sin\theta = \dfrac{1}{\csc\theta} \), \( \cos\theta = \dfrac{1}{\sec\theta} \), \( \tan\theta = \dfrac{1}{\cot\theta} \)

Quotient Relations

\( \tan\theta = \dfrac{\sin\theta}{\cos\theta} \), \( \cot\theta = \dfrac{\cos\theta}{\sin\theta} \)

 Pythagorean Identity

\( \sin^2\theta + \cos^2\theta = 1 \)

Derived formulas:

\( 1 + \tan^2\theta = \sec^2\theta \)

\( 1 + \cot^2\theta = \csc^2\theta \)

 Trigonometric Values for Standard Angles

The most commonly used exact values are:

\( \theta \)\( \sin\theta \)\( \cos\theta \)\( \tan\theta \)
\( 0^\circ \)010
\( 30^\circ \)\( \dfrac{1}{2} \)\( \dfrac{\sqrt{3}}{2} \)\( \dfrac{1}{\sqrt{3}} \)
\( 45^\circ \)\( \dfrac{1}{\sqrt{2}} \)\( \dfrac{1}{\sqrt{2}} \)1
\( 60^\circ \)\( \dfrac{\sqrt{3}}{2} \)\( \dfrac{1}{2} \)\( \sqrt{3} \)
\( 90^\circ \)10Not defined

Example 

In a right triangle, if \( \sin\theta = \dfrac{3}{5} \), find \( \cos\theta \).

▶️ Answer / Explanation

Given:

\( \sin\theta = \dfrac{3}{5} = \dfrac{P}{H} \Rightarrow P = 3,\ H = 5 \)

Using Pythagoras:

\( B = \sqrt{H^2 – P^2} = \sqrt{25 – 9} = 4 \)

Thus

\( \cos\theta = \dfrac{B}{H} = \dfrac{4}{5} \)

Example 

If \( \tan\theta = 2 \), find the values of \( \sin\theta \) and \( \cos\theta \).

▶️ Answer / Explanation

Assume triangle with \( \tan\theta = \dfrac{P}{B} = 2 = \dfrac{2}{1} \)

Hypotenuse \( H = \sqrt{2^2 + 1^2} = \sqrt{5} \)

\( \sin\theta = \dfrac{P}{H} = \dfrac{2}{\sqrt{5}} \)

\( \cos\theta = \dfrac{1}{\sqrt{5}} \)

Example 

If \( 3\sin\theta + 4\cos\theta = 5 \), find \( \sin\theta \) and \( \cos\theta \).

▶️ Answer / Explanation

We use the identity:

\( a\sin\theta + b\cos\theta = \sqrt{a^2 + b^2}\sin(\theta + \alpha) \)

Here \( a = 3, b = 4 \).

\( \sqrt{3^2 + 4^2} = 5 \)

Equation becomes:

\( 5\sin(\theta + \alpha) = 5 \Rightarrow \sin(\theta + \alpha) = 1 \)

So

\( \theta + \alpha = 90^\circ \)

Now find \( \alpha \) such that

\( \sin\alpha = \dfrac{4}{5},\quad \cos\alpha = \dfrac{3}{5} \)

Thus

\( \theta = 90^\circ – \alpha = 90^\circ – \cos^{-1}\left(\dfrac{3}{5}\right) \)

Then

\( \sin\theta = \dfrac{3}{5},\quad \cos\theta = \dfrac{4}{5} \)

Trigonometric Standard Angles

Standard angles are angles for which trigonometric ratios have exact values. These angles form the foundation of most JEE trigonometry calculations. Memorizing these values helps in solving equations, simplifying expressions, and evaluating identities without a calculator.

Radian to Degree Conversion Formulas

These are extremely important for JEE and must be memorized.

  • \( 180^\circ = \pi\ \text{radians} \)
  • \( 1\ \text{radian} = \dfrac{180^\circ}{\pi} \)
  • \( 1^\circ = \dfrac{\pi}{180}\ \text{radians} \)

Standard Angles in Degrees and Radians

  • \( 0^\circ = 0 \)
  • \( 30^\circ = \dfrac{\pi}{6} \)
  • \( 45^\circ = \dfrac{\pi}{4} \)
  • \( 60^\circ = \dfrac{\pi}{3} \)
  • \( 90^\circ = \dfrac{\pi}{2} \)
  • \( 180^\circ = \pi \)
  • \( 270^\circ = \dfrac{3\pi}{2} \)
  • \( 360^\circ = 2\pi \)

General Conversion Formulas:

  • To convert degrees to radians: \( \theta_{\text{radians}} = \theta_{\text{degrees}} \cdot \dfrac{\pi}{180} \)
  • To convert radians to degrees: \( \theta_{\text{degrees}} = \theta_{\text{radians}} \cdot \dfrac{180}{\pi} \)

Examples of Conversions:

  • \( 120^\circ = 120 \cdot \dfrac{\pi}{180} = \dfrac{2\pi}{3} \)
  • \( \dfrac{5\pi}{6}\ \text{radians} = \dfrac{5\pi}{6} \cdot \dfrac{180}{\pi} = 150^\circ \)

 Exact Trigonometric Values for Standard Angles

The following table shows exact values of the basic trigonometric ratios.

\( \theta \)\( \sin\theta \)\( \cos\theta \)\( \tan\theta \)
\( 0^\circ \)010
\( 30^\circ \)\( \dfrac{1}{2} \)\( \dfrac{\sqrt{3}}{2} \)\( \dfrac{1}{\sqrt{3}} \)
\( 45^\circ \)\( \dfrac{1}{\sqrt{2}} \)\( \dfrac{1}{\sqrt{2}} \)1
\( 60^\circ \)\( \dfrac{\sqrt{3}}{2} \)\( \dfrac{1}{2} \)\( \sqrt{3} \)
\( 90^\circ \)10Not defined

 Reciprocal Values for Standard Angles

  • \( \csc 30^\circ = 2 \)
  • \( \sec 60^\circ = 2 \)
  • \( \cot 45^\circ = 1 \)
  • \( \csc 45^\circ = \sqrt{2} \)

Example 

Find the value of \( \sin 60^\circ \cos 30^\circ \).

▶️ Answer / Explanation

\( \sin 60^\circ = \dfrac{\sqrt{3}}{2} \), \( \cos 30^\circ = \dfrac{\sqrt{3}}{2} \)

Product \( = \dfrac{\sqrt{3}}{2} \cdot \dfrac{\sqrt{3}}{2} = \dfrac{3}{4} \)

Example 

Evaluate \( \dfrac{\tan 45^\circ + \sin 30^\circ}{\cos 60^\circ} \).

▶️ Answer / Explanation

\( \tan 45^\circ = 1,\ \sin 30^\circ = \dfrac{1}{2},\ \cos 60^\circ = \dfrac{1}{2} \)

Expression \( = \dfrac{1 + \dfrac{1}{2}}{\dfrac{1}{2}} = \dfrac{\dfrac{3}{2}}{\dfrac{1}{2}} = 3 \)

Example

Simplify \( \dfrac{\sin 30^\circ + \sin 60^\circ}{\cos 45^\circ} \).

▶️ Answer / Explanation

\( \sin 30^\circ = \dfrac{1}{2} \), \( \sin 60^\circ = \dfrac{\sqrt{3}}{2} \), \( \cos 45^\circ = \dfrac{1}{\sqrt{2}} \)

Numerator \( = \dfrac{1}{2} + \dfrac{\sqrt{3}}{2} = \dfrac{1 + \sqrt{3}}{2} \)

Divide by \( \dfrac{1}{\sqrt{2}} \Rightarrow \) multiply by \( \sqrt{2} \)

\( = \dfrac{1 + \sqrt{3}}{2} \cdot \sqrt{2} = \dfrac{\sqrt{2} + \sqrt{6}}{2} \)

Scroll to Top