Home / IIT- JEE / IIT-JEE Main / Unit 14- Properties and transformations- Study Notes

IIT JEE Main Maths -Unit 14- Properties and transformations- Study Notes-New Syllabus

IIT JEE Main Maths -Unit 14- Properties and transformations – Study Notes – New syllabus

IIT JEE Main Maths -Unit 14- Properties and transformations – Study Notes -IIT JEE Main Maths – per latest Syllabus.

Key Concepts:

  • Properties of Triangle (Trigonometric Form)

IIT JEE Main Maths -Study Notes – All Topics

Properties of Triangle (Trigonometric Form)

These formulas relate the sides and angles of a triangle using trigonometric functions. They are essential in JEE for solving geometry, trigonometry, and vector problems.

Notation Used

For triangle \( ABC \):

  • Side \( a \) opposite angle \( A \)
  • Side \( b \) opposite angle \( B \)
  • Side \( c \) opposite angle \( C \)

Sine Rule

\( \dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R \)

  • R = circumradius
  • Useful when two angles and one side are known
  • Useful in ambiguous case (SSA condition)

Cosine Rule

\( a^2 = b^2 + c^2 – 2bc\cos A \)

Similarly:

  • \( b^2 = a^2 + c^2 – 2ac\cos B \)
  • \( c^2 = a^2 + b^2 – 2ab\cos C \)

Uses:

  • When two sides and included angle are known
  • Checking if triangle is acute, obtuse, or right

Projection Rule

\( b = a\cos C + c\cos A \)

Similarly:

  • \( a = b\cos C + c\cos B \)
  • \( c = a\cos B + b\cos A \)

Use: Decomposing sides into projections; helpful in vector geometry.

Napier’s Analogy

For any triangle:

\( \tan\dfrac{A – B}{2} = \dfrac{a – b}{a + b} \cot\dfrac{C}{2} \)

Very useful in solving triangles when one side is known to be slightly larger or smaller.

Area of Triangle

(a) Standard Formula

Area \( = \dfrac{1}{2} bc\sin A = \dfrac{1}{2} ca\sin B = \dfrac{1}{2} ab\sin C \)

(b) Using Circumradius

Area \( = \dfrac{abc}{4R} \)

(c) Using Inradius

Area \( = r s \) where \( s = \dfrac{a + b + c}{2} \)

(d) Heron’s Formula

Area \( = \sqrt{s(s – a)(s – b)(s – c)} \)

 Half Angle Formulas (Important)

  • \( \sin\dfrac{A}{2} = \sqrt{\dfrac{(s – b)(s – c)}{bc}} \)
  • \( \cos\dfrac{A}{2} = \sqrt{\dfrac{s(s – a)}{bc}} \)
  • \( \tan\dfrac{A}{2} = \sqrt{\dfrac{(s – b)(s – c)}{s(s – a)}} \)

Checks for Right Triangle

If \( c \) is the largest side:

  • \( c^2 = a^2 + b^2 \Rightarrow \) right triangle
  • \( c^2 > a^2 + b^2 \Rightarrow \) obtuse triangle
  • \( c^2 < a^2 + b^2 \Rightarrow \) acute triangle

Example 

In a triangle, \( A = 30^\circ \), \( B = 60^\circ \), and \( a = 10 \). Find side \( b \).

▶️ Answer / Explanation

Use Sine Rule:

\( \dfrac{a}{\sin A} = \dfrac{b}{\sin B} \Rightarrow \dfrac{10}{\dfrac{1}{2}} = \dfrac{b}{\dfrac{\sqrt{3}}{2}} \)

\( 20 = \dfrac{2b}{\sqrt{3}} \Rightarrow b = 10\sqrt{3} \)

Answer: \( b = 10\sqrt{3} \)

Example 

In triangle \( ABC \), sides are \( a = 8 \), \( b = 6 \), \( c = 7 \). Find angle \( A \).

▶️ Answer / Explanation

Use Cosine Rule:

\( a^2 = b^2 + c^2 – 2bc\cos A \)

\( 8^2 = 6^2 + 7^2 – 2(6)(7)\cos A \)

\( 64 = 36 + 49 – 84\cos A \)

\( 64 = 85 – 84\cos A \Rightarrow 84\cos A = 21 \Rightarrow \cos A = \dfrac{1}{4} \)

\( A = \cos^{-1}\left(\dfrac{1}{4}\right) \)

Answer: \( A = \cos^{-1}\left(\dfrac{1}{4}\right) \)

Example 

In triangle \( ABC \), \( a = 10 \), \( b = 7 \), and \( C = 120^\circ \). Find side \( c \).

▶️ Answer / Explanation

Use Cosine Rule:

\( c^2 = a^2 + b^2 – 2ab\cos C \)

Since \( \cos 120^\circ = -\dfrac{1}{2} \):

\( c^2 = 10^2 + 7^2 – 2(10)(7)\left(-\dfrac{1}{2}\right) \)

\( c^2 = 100 + 49 + 70 = 219 \)

\( c = \sqrt{219} \)

Answer: \( c = \sqrt{219} \)

Scroll to Top