Home / IIT- JEE / IIT-JEE Main / Unit 2- Modulus and argument- Study Notes

IIT JEE Main Maths -Unit 2- Modulus and argument- Study Notes-New Syllabus

IIT JEE Main Maths -Unit 2- Modulus and argument – Study Notes – New syllabus

IIT JEE Main Maths -Unit 2- Modulus and argument – Study Notes -IIT JEE Main Maths – per latest Syllabus.

Key Concepts:

  • Modulus and Argument of a Complex Number

IIT JEE Main Maths -Study Notes – All Topics

Modulus and Argument of a Complex Number

Let \( z = x + iy \) be a complex number, where \( x \) is the real part and \( y \) is the imaginary part.

1. Modulus of a Complex Number

The modulus of \( z \) is its distance from the origin on the Argand plane, denoted by \( |z| \).

\( |z| = \sqrt{x^2 + y^2} \)

Geometrical Meaning: It represents the length of the line segment joining the origin \( (0, 0) \) and the point \( (x, y) \) on the complex plane.

2. Argument of a Complex Number

The argument (or amplitude) of \( z \) is the angle \( \theta \) made by the line joining the origin and the point \( (x, y) \) with the positive x-axis, measured in radians.

\( \tan \theta = \dfrac{y}{x} \)

The argument is denoted by \( \arg(z) \). Its principal value lies between \( -\pi \) and \( \pi \).

Polar Form: Every complex number can be expressed as

\( z = r(\cos \theta + i \sin \theta) \)

where \( r = |z| \) and \( \theta = \arg(z) \).

3. Argument in Different Quadrants   

QuadrantxyArgument (θ)

I

++\( \tan^{-1}\left(\dfrac{y}{x}\right) \)

II

+\( \pi – \tan^{-1}\left(\dfrac{y}{|x|}\right) \)

III

\( -\pi + \tan^{-1}\left(\dfrac{y}{x}\right) \)

IV

+\( -\tan^{-1}\left(\dfrac{|y|}{x}\right) \)

Example 

Find the modulus and argument of \( z = 3 + 4i \).

▶️ Answer / Explanation

Step 1: \( |z| = \sqrt{3^2 + 4^2} = 5 \)

Step 2: \( \tan \theta = \dfrac{4}{3} \Rightarrow \theta = \tan^{-1}\left(\dfrac{4}{3}\right) = 53.13^\circ = \dfrac{\pi}{3.39} \)

Answer: \( |z| = 5, \; \arg(z) = 53.13^\circ \)

Example 

Find the modulus and argument of \( z = -2 + 2\sqrt{3}i \).

▶️ Answer / Explanation

Step 1: \( |z| = \sqrt{(-2)^2 + (2\sqrt{3})^2} = \sqrt{4 + 12} = 4 \)

Step 2: \( \tan \theta = \dfrac{2\sqrt{3}}{-2} = -\sqrt{3} \)

The point \((-2, 2\sqrt{3})\) lies in the second quadrant.

So, \( \theta = \pi – \dfrac{\pi}{3} = \dfrac{2\pi}{3} \)

Answer: \( |z| = 4, \; \arg(z) = \dfrac{2\pi}{3} \)

Example 3

Find the modulus and argument of \( z = -3 – 3i \).

▶️ Answer / Explanation

Step 1: \( |z| = \sqrt{(-3)^2 + (-3)^2} = \sqrt{18} = 3\sqrt{2} \)

Step 2: \( \tan \theta = \dfrac{-3}{-3} = 1 \)

Point \((-3, -3)\) lies in the third quadrant.

\( \theta = \pi + \dfrac{\pi}{4} = \dfrac{5\pi}{4} \) or equivalently \( -\dfrac{3\pi}{4} \) (principal value).

Answer: \( |z| = 3\sqrt{2}, \; \arg(z) = -\dfrac{3\pi}{4} \)

Scroll to Top