Home / IIT- JEE / IIT-JEE Main / Unit 3- Adjoint and inverse of a square matrix- Study Notes

IIT JEE Main Maths -Unit 3- Adjoint and inverse of a square matrix- Study Notes-New Syllabus

IIT JEE Main Maths -Unit 3- Adjoint and inverse of a square matrix – Study Notes – New syllabus

IIT JEE Main Maths -Unit 3- Adjoint and inverse of a square matrix – Study Notes -IIT JEE Main Maths – per latest Syllabus.

Key Concepts:

  • Adjoint of a Matrix
  • Inverse of a Matrix

IIT JEE Main Maths -Study Notes – All Topics

Adjoint of a Matrix

Let \( A = [a_{ij}]_{n \times n} \) be a square matrix. Then, the adjoint (or adjugate) of \( A \) is the transpose of the cofactor matrix of \( A \).

\( \text{adj}(A) = [A_{ij}]^T \)

where \( A_{ij} \) are the cofactors of the corresponding elements \( a_{ij} \).

Steps to Find adj(A):

  1. Find the cofactor of each element of \( A \).
  2. Form the cofactor matrix.
  3. Transpose the cofactor matrix → gives adj(A).

 Properties of Adjoint Matrix

PropertyStatement
1\( A \times \text{adj}(A) = \text{adj}(A) \times A = |A| I \)
2\( \text{adj}(AB) = \text{adj}(B)\text{adj}(A) \)
3\( \text{adj}(A^T) = (\text{adj}(A))^T \)
4If \( A \) is singular (i.e., \( |A| = 0 \)), then \( \text{adj}(A) \) exists but \( A^{-1} \) does not.

 Inverse of a Matrix

If \( A \) is a non-singular square matrix (i.e., \( |A| \ne 0 \)), its inverse is defined as:

\( A^{-1} = \dfrac{1}{|A|} \text{adj}(A) \)

Note: A matrix is invertible only if \( |A| \ne 0 \). If \( |A| = 0 \), then \( A \) is called a singular matrix and has no inverse.

 Verification Property

For a non-singular matrix \( A \):

\( A \times A^{-1} = A^{-1} \times A = I \)

Example 

Find the adjoint and inverse of \( A = \begin{bmatrix}1 & 2\\3 & 4\end{bmatrix} \).

▶️ Answer / Explanation

Step 1: Find the cofactor matrix.

\( A_{11} = 4, \, A_{12} = -3, \, A_{21} = -2, \, A_{22} = 1 \)

So, cofactor matrix = \( \begin{bmatrix}4 & -3\\-2 & 1\end{bmatrix} \)

Step 2: Transpose → \( \text{adj}(A) = \begin{bmatrix}4 & -2\\-3 & 1\end{bmatrix} \)

Step 3: \( |A| = (1)(4) – (2)(3) = 4 – 6 = -2 \)

Step 4: \( A^{-1} = \dfrac{1}{|A|}\text{adj}(A) = \dfrac{-1}{2}\begin{bmatrix}4 & -2\\-3 & 1\end{bmatrix} = \begin{bmatrix}-2 & 1\\1.5 & -0.5\end{bmatrix} \)

Answer: \( \text{adj}(A) = \begin{bmatrix}4 & -2\\-3 & 1\end{bmatrix}, \quad A^{-1} = \begin{bmatrix}-2 & 1\\1.5 & -0.5\end{bmatrix} \)

Example 

Find \( \text{adj}(A) \) for \( A = \begin{bmatrix}2 & 1 & 3\\1 & 0 & 2\\4 & 1 & 8\end{bmatrix} \).

▶️ Answer / Explanation

Step 1: Compute minors and cofactors:

  • \( A_{11} = \begin{vmatrix}0 & 2\\1 & 8\end{vmatrix} = 0×8 – 2×1 = -2 \)
  • \( A_{12} = (-1)^{1+2}\begin{vmatrix}1 & 2\\4 & 8\end{vmatrix} = – (8 – 8) = 0 \)
  • \( A_{13} = (+1)\begin{vmatrix}1 & 0\\4 & 1\end{vmatrix} = 1×1 – 0×4 = 1 \)

Similarly, compute all cofactors:

$ \text{Cofactor matrix} = \begin{bmatrix} -2 & 0 & 1\\ -1 & 4 & -1\\ 2 & -1 & -2 \end{bmatrix} $

Step 2: \( \text{adj}(A) = (\text{Cofactor matrix})^T = \begin{bmatrix}-2 & -1 & 2\\0 & 4 & -1\\1 & -1 & -2\end{bmatrix} \)

Answer: \( \text{adj}(A) = \begin{bmatrix}-2 & -1 & 2\\0 & 4 & -1\\1 & -1 & -2\end{bmatrix} \)

Example

Find the inverse of \( A = \begin{bmatrix}1 & 2 & 3\\0 & 1 & 4\\5 & 6 & 0\end{bmatrix} \).

▶️ Answer / Explanation

Step 1: Compute \( |A| \) by expanding along the first row:

\( |A| = 1(1×0 – 4×6) – 2(0×0 – 4×5) + 3(0×6 – 1×5) \)

\( = 1(-24) – 2(-20) + 3(-5) = -24 + 40 – 15 = 1 \)

Step 2: Find cofactors (tedious but straightforward):

$ \text{Cofactor matrix} = \begin{bmatrix} -24 & 20 & -5\\ 18 & -15 & 4\\ 5 & -4 & 1 \end{bmatrix} $

Step 3: \( \text{adj}(A) = (\text{Cofactor matrix})^T = \begin{bmatrix}-24 & 18 & 5\\20 & -15 & -4\\-5 & 4 & 1\end{bmatrix} \)

Step 4: Since \( |A| = 1 \), \( A^{-1} = \text{adj}(A) \).

Answer: $ A^{-1} = \begin{bmatrix} -24 & 18 & 5\\ 20 & -15 & -4\\ -5 & 4 & 1 \end{bmatrix} $

Inverse of a Matrix

Definition

If \( A \) is a square matrix such that there exists another matrix \( B \) satisfying

\( AB = BA = I \)

then \( B \) is called the inverse of \( A \), and it is denoted by \( A^{-1} \).

Hence, \( A^{-1} \) exists only if \( A \) is a non-singular matrix (i.e., \( |A| \ne 0 \)).

Formula for Inverse

For a non-singular square matrix \( A \):

where \( \text{adj}(A) \) is the adjoint (transpose of cofactor matrix).

Condition for Existence

The inverse of \( A \) exists if and only if \( |A| \ne 0 \).

  • If \( |A| = 0 \), then \( A \) is singular and has no inverse.
  • If \( |A| \ne 0 \), then \( A \) is non-singular and \( A^{-1} \) exists.

Properties of Inverse Matrix

PropertyStatement
1\( (A^{-1})^{-1} = A \)
2\( (AB)^{-1} = B^{-1}A^{-1} \)
3\( (A^T)^{-1} = (A^{-1})^T \)
4If \( A \) is orthogonal, then \( A^{-1} = A^T \)

Shortcut Formula for 2 × 2 Matrix

If \( A = \begin{bmatrix}a & b\\c & d\end{bmatrix} \), then

\( A^{-1} = \dfrac{1}{ad – bc} \begin{bmatrix}d & -b\\-c & a\end{bmatrix} \)

Verification Property

A matrix \( A \) and its inverse always satisfy:

\( A \times A^{-1} = A^{-1} \times A = I \)

Example 

Find the inverse of \( A = \begin{bmatrix}4 & 3\\3 & 2\end{bmatrix} \).

▶️ Answer / Explanation

\( |A| = 4(2) – 3(3) = 8 – 9 = -1 \)

adj(A) = \( \begin{bmatrix}2 & -3\\-3 & 4\end{bmatrix} \)

\( A^{-1} = \dfrac{1}{-1} \begin{bmatrix}2 & -3\\-3 & 4\end{bmatrix} = \begin{bmatrix}-2 & 3\\3 & -4\end{bmatrix} \)

Answer: \( A^{-1} = \begin{bmatrix}-2 & 3\\3 & -4\end{bmatrix} \)

Example 

Find the inverse of \( A = \begin{bmatrix}1 & 2 & 3\\0 & 1 & 4\\5 & 6 & 0\end{bmatrix} \).

▶️ Answer / Explanation

\( |A| = 1(1×0 – 4×6) – 2(0×0 – 4×5) + 3(0×6 – 1×5) \)

\( = 1(-24) – 2(-20) + 3(-5) = -24 + 40 – 15 = 1 \)

Cofactor matrix = $ \begin{bmatrix} -24 & 20 & -5\\ 18 & -15 & 4\\ 5 & -4 & 1 \end{bmatrix} $

So, \( \text{adj}(A) = \begin{bmatrix}-24 & 18 & 5\\20 & -15 & -4\\-5 & 4 & 1\end{bmatrix} \)

Since \( |A| = 1 \), \( A^{-1} = \text{adj}(A) \).

Answer: \( A^{-1} = \begin{bmatrix}-24 & 18 & 5\\20 & -15 & -4\\-5 & 4 & 1\end{bmatrix} \)

Example

Show that for \( A = \begin{bmatrix}2 & 3\\1 & 4\end{bmatrix} \), \( A \times A^{-1} = I \).

▶️ Answer / Explanation

\( |A| = 2(4) – 3(1) = 8 – 3 = 5 \)

\( \text{adj}(A) = \begin{bmatrix}4 & -3\\-1 & 2\end{bmatrix} \)

\( A^{-1} = \dfrac{1}{5}\begin{bmatrix}4 & -3\\-1 & 2\end{bmatrix} \)

Now, \( A \times A^{-1} = \begin{bmatrix}2 & 3\\1 & 4\end{bmatrix} \times \dfrac{1}{5}\begin{bmatrix}4 & -3\\-1 & 2\end{bmatrix} = \dfrac{1}{5}\begin{bmatrix}8 – 3 & -6 + 6\\4 – 4 & -3 + 8\end{bmatrix} = \dfrac{1}{5}\begin{bmatrix}5 & 0\\0 & 5\end{bmatrix} = I \)

Hence proved: \( A \times A^{-1} = I \).

Scroll to Top