Home / IIT- JEE / IIT-JEE Main / Unit 5- Simple applications- Study Notes

IIT JEE Main Maths -Unit 5- Simple applications- Study Notes-New Syllabus

IIT JEE Main Maths -Unit 5- Simple applications – Study Notes – New syllabus

IIT JEE Main Maths -Unit 5- Simple applications – Study Notes -IIT JEE Main Maths – per latest Syllabus.

Key Concepts:

  • Binomial Theorem for Any Rational Index (Generalized Binomial Expansion)
  • Binomial Theorem — Approximations and Applications (Including Negative and Fractional Indices)
  • Binomial Theorem — Properties and Summation of Binomial Coefficients

IIT JEE Main Maths -Study Notes – All Topics

Binomial Theorem for Any Rational Index (Generalized Binomial Expansion)

The standard binomial theorem \( (x + a)^n = \sum_{r=0}^{n} \binom{n}{r}x^{n – r}a^r \) applies only when \( n \) is a positive integer.

However, the theorem can be extended to cases where the index \( n \) is any rational number (positive, negative, or fractional).

Generalized Binomial Theorem

For any rational number \( n \) and \( |x| < 1 \):

$ (1 + x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots $

where the binomial coefficients are defined as:

$ \binom{n}{r} = \dfrac{n(n – 1)(n – 2)\dots(n – r + 1)}{r!} $

This series is infinite when \( n \) is not a positive integer.

Expansion Examples

$ (1 + x)^{1/2} = 1 + \dfrac{1}{2}x – \dfrac{1}{8}x^2 + \dfrac{1}{16}x^3 – \dots $

$ (1 – x)^{-1} = 1 + x + x^2 + x^3 + x^4 + \dots $

$ (1 – x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots $

Validity of the Expansion

The series converges only for \( |x| < 1 \). For \( |x| \ge 1 \), the infinite series diverges (does not have a finite sum).

General Term in the Expansion

The general term (r-th term, starting from \( r = 0 \)) is:

$ T_{r+1} = \binom{n}{r}x^r = \dfrac{n(n – 1)(n – 2)\dots(n – r + 1)}{r!}x^r $

Important Special Cases

  • Case 1: \( (1 + x)^{-1} = 1 – x + x^2 – x^3 + \dots \)
  • Case 2: \( (1 – x)^{-1} = 1 + x + x^2 + x^3 + \dots \)
  • Case 3: \( (1 + x)^{-2} = 1 – 2x + 3x^2 – 4x^3 + \dots \)

Example 

Expand \( (1 + x)^{1/2} \) up to the term containing \( x^3 \).

▶️ Answer / Explanation

We know that:

\( (1 + x)^{1/2} = 1 + \dfrac{1}{2}x + \dfrac{(1/2)(-1/2)}{2!}x^2 + \dfrac{(1/2)(-1/2)(-3/2)}{3!}x^3 + \dots \)

\( = 1 + \dfrac{1}{2}x – \dfrac{1}{8}x^2 + \dfrac{1}{16}x^3 + \dots \)

Answer: \( (1 + x)^{1/2} = 1 + \dfrac{1}{2}x – \dfrac{1}{8}x^2 + \dfrac{1}{16}x^3 + \dots \)

Example 

Find the coefficient of \( x^3 \) in the expansion of \( (1 – 2x)^{-3/2} \).

▶️ Answer / Explanation

General term: \( T_{r+1} = \binom{-3/2}{r}(-2x)^r \)

Coefficient of \( x^3 \): \( r = 3 \)

\( \binom{-3/2}{3} = \dfrac{(-3/2)(-5/2)(-7/2)}{3!} = -\dfrac{35}{16} \)

Hence, coefficient = \( -\dfrac{35}{16}(-2)^3 = -\dfrac{35}{16}(-8) = \dfrac{280}{16} = 17.5 \)

Answer: Coefficient of \( x^3 = 17.5 \)

Example

Use the binomial expansion to approximate \( (1.02)^5 \) correct up to 3 decimal places.

▶️ Answer / Explanation

Let \( (1 + x)^5 \) with \( x = 0.02 \).

\( (1 + 0.02)^5 = 1 + 5(0.02) + \dfrac{5 \times 4}{2!}(0.02)^2 + \dfrac{5 \times 4 \times 3}{3!}(0.02)^3 \)

= \( 1 + 0.1 + 0.008 + 0.0004 = 1.1084 \)

Answer: \( (1.02)^5 \approx 1.108 \)

Binomial Theorem for Negative and Fractional Indices

When the index \( n \) is negative or fractional, the expansion of \( (1 + x)^n \) is an infinite series that converges only for \( |x| < 1 \).

$ (1 + x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots $

where the generalized binomial coefficients are:

$ \binom{n}{r} = \dfrac{n(n – 1)(n – 2)\dots(n – r + 1)}{r!}, \quad r = 0, 1, 2, \dots $

Common Expansions (to Remember for JEE)

ExpressionBinomial Expansion
\( (1 + x)^{-1} \)\( 1 – x + x^2 – x^3 + x^4 – \dots \)
\( (1 – x)^{-1} \)\( 1 + x + x^2 + x^3 + \dots \)
\( (1 + x)^{-2} \)\( 1 – 2x + 3x^2 – 4x^3 + 5x^4 – \dots \)
\( (1 + x)^{1/2} \)\( 1 + \dfrac{1}{2}x – \dfrac{1}{8}x^2 + \dfrac{1}{16}x^3 – \dots \)

General Term in the Expansion

The general term (\( r + 1 \)th term) is given by:

$ T_{r+1} = \binom{n}{r}x^r = \dfrac{n(n – 1)(n – 2)\dots(n – r + 1)}{r!}x^r $

Convergence Condition

The binomial series for negative or fractional index is valid only when:

$ |x| < 1 $

This ensures that the infinite series converges.

Approximations for Small Values of \( x \)

When \( |x| \ll 1 \), we can approximate \( (1 + x)^n \) by retaining only a few terms:

$ (1 + x)^n \approx 1 + nx + \dfrac{n(n – 1)}{2}x^2 $

This is extremely useful for approximations and error estimation in JEE.

 Applications of Binomial Theorem (JEE-Oriented)

  • Approximating values like \( (1.02)^5, (0.98)^3, \dfrac{1}{(1.03)^2} \), etc.
  • Solving limit problems where \( x \) tends to 0.
  • Error estimation in small measurements or physical quantities.
  • Simplification of algebraic expressions using first few terms of expansion.

Example

Expand \( (1 – x)^{-3} \) up to the term containing \( x^3 \).

▶️ Answer / Explanation

\( (1 – x)^{-3} = 1 + (-3)(-x) + \dfrac{(-3)(-4)}{2!}(-x)^2 + \dfrac{(-3)(-4)(-5)}{3!}(-x)^3 + \dots \)

= \( 1 + 3x + 6x^2 + 10x^3 + \dots \)

Answer: \( (1 – x)^{-3} = 1 + 3x + 6x^2 + 10x^3 + \dots \)

Example 

Approximate \( \dfrac{1}{(1.02)^3} \) up to three decimal places using binomial expansion.

▶️ Answer / Explanation

We can write \( \dfrac{1}{(1.02)^3} = (1 + 0.02)^{-3} \).

\( (1 + x)^{-3} = 1 – 3x + 6x^2 – 10x^3 + \dots \)

Substitute \( x = 0.02 \): \( = 1 – 3(0.02) + 6(0.02)^2 – 10(0.02)^3 = 1 – 0.06 + 0.0024 – 0.00008 = 0.94232 \)

Answer: \( \dfrac{1}{(1.02)^3} \approx 0.942 \)

Example 

Find the first four terms in the expansion of \( (1 – 2x)^{-1/2} \).

▶️ Answer / Explanation

\( (1 – 2x)^{-1/2} = 1 + \dfrac{-1}{2}(-2x) + \dfrac{(-1/2)(-3/2)}{2!}(-2x)^2 + \dfrac{(-1/2)(-3/2)(-5/2)}{3!}(-2x)^3 + \dots \)

= \( 1 + x + \dfrac{3}{2}x^2 + \dfrac{5}{2}x^3 + \dots \)

Answer: \( (1 – 2x)^{-1/2} = 1 + x + \dfrac{3}{2}x^2 + \dfrac{5}{2}x^3 + \dots \)

Binomial Theorem — Properties and Summation of Binomial Coefficients (JEE Shortcuts and Patterns)

Definition of Binomial Coefficients

The binomial coefficients are the constants \( \displaystyle \binom{n}{r} \) that appear in the expansion of \( (x + a)^n \):

$ (x + a)^n = \sum_{r=0}^{n} \binom{n}{r} x^{n – r} a^r $

where

$ \binom{n}{r} = \dfrac{n!}{r!(n – r)!}, \quad r = 0, 1, 2, \dots, n $

Basic Properties of Binomial Coefficients

PropertyFormula
(i) Symmetry Property\( \binom{n}{r} = \binom{n}{n – r} \)
(ii) Pascal’s Identity\( \binom{n}{r} + \binom{n}{r – 1} = \binom{n + 1}{r} \)
(iii) First and Last Coefficient\( \binom{n}{0} = \binom{n}{n} = 1 \)
(iv) Greatest CoefficientIf \( n \) is even → greatest = \( \binom{n}{n/2} \); if \( n \) is odd → two equal greatest coefficients \( \binom{n}{(n-1)/2} = \binom{n}{(n+1)/2} \)
(v) Sum Property\( \sum_{r=0}^{n} \binom{n}{r} = 2^n \)

Alternate Sum Property

$ \sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0 $

Proof: Expand \( (1 – 1)^n = 0 \Rightarrow \sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0 \).

Even and Odd Term Sums

$ \text{Sum of even terms} = \text{Sum of odd terms} = 2^{n-1} $

Proof:

$ (1 + 1)^n = 2^n \quad \text{and} \quad (1 – 1)^n = 0 $

$ \Rightarrow \text{Even + Odd} = 2^n, \quad \text{Even − Odd} = 0 $

$ \Rightarrow \text{Even} = \text{Odd} = 2^{n-1} $

General Summation Results

  • \( \displaystyle \sum_{r=0}^{n} r\binom{n}{r} = n \times 2^{n – 1} \)
  • \( \displaystyle \sum_{r=0}^{n} r^2\binom{n}{r} = n(n + 1) \times 2^{n – 2} \)
  • \( \displaystyle \sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n} \)

Binomial Theorem Applications in Coefficient Patterns

For expansions like \( (1 + x)^n + (1 – x)^n \):

$ (1 + x)^n + (1 – x)^n = 2\left[\binom{n}{0} + \binom{n}{2}x^2 + \binom{n}{4}x^4 + \dots\right] $

→ Contains only even powers of x.

For \( (1 + x)^n – (1 – x)^n \):

$ (1 + x)^n – (1 – x)^n = 2\left[\binom{n}{1}x + \binom{n}{3}x^3 + \dots\right] $

→ Contains only odd powers of x.

Example 

Find the value of \( \displaystyle \sum_{r=0}^{5} \binom{5}{r} \).

▶️ Answer / Explanation

\( \sum_{r=0}^{5} \binom{5}{r} = 2^5 = 32 \)

Answer: 32

Example 

Find \( \displaystyle \sum_{r=0}^{8} r\binom{8}{r} \).

▶️ Answer / Explanation

Using formula \( \sum r\binom{n}{r} = n2^{n-1} \):

\( = 8 \times 2^{7} = 8 \times 128 = 1024 \)

Answer: 1024

Example 

Find \( \displaystyle \sum_{r=0}^{10} (-1)^r \binom{10}{r} \).

▶️ Answer / Explanation

We know that:

\( (1 – 1)^{10} = 0 \Rightarrow \sum_{r=0}^{10} (-1)^r \binom{10}{r} = 0 \)

Answer: 0

Example 

Find \( \displaystyle \sum_{r=0}^{n} \binom{n}{r}^2 \).

▶️ Answer / Explanation

We know the identity:

\( \sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n} \)

Answer: \( \displaystyle \binom{2n}{n} \)

Scroll to Top