Home / IIT- JEE / IIT-JEE Main / Unit 6- Sum of n Terms of Special Series- Study Notes

IIT JEE Main Maths -Unit 6- Sum of n Terms of Special Series- Study Notes-New Syllabus

IIT JEE Main Maths -Unit 6- Sum of n Terms of Special Series – Study Notes – New syllabus

IIT JEE Main Maths -Unit 6- Sum of n Terms of Special Series – Study Notes -IIT JEE Main Maths – per latest Syllabus.

Key Concepts:

  • Sum of n Terms of Special Series — Arithmetic–Geometric Progression (A.G.P.) and Infinite Series
  • Sigma (Σ) Notation and Summation of Series (A.P., G.P., and A.G.P.)

IIT JEE Main Maths -Study Notes – All Topics

Sum of n Terms of Special Series — Arithmetic–Geometric Progression (A.G.P.) and Infinite Series

An Arithmetic–Geometric Progression (A.G.P.) is a sequence in which each term is the product of the corresponding terms of an A.P. and a G.P..

$\text{Example: } a,\, (a + d)r,\, (a + 2d)r^2,\, (a + 3d)r^3,\, \dots $

Here, \( a, a + d, a + 2d, \dots \) form an A.P., and \( 1, r, r^2, \dots \) form a G.P.

General Term of an A.G.P.

The \( n \)th term of an A.G.P. is:

$ T_n = (a + (n – 1)d)r^{n – 1}$

Sum of n Terms of an A.G.P.

Let \( S_n = a + (a + d)r + (a + 2d)r^2 + (a + 3d)r^3 + \dots + [a + (n – 1)d]r^{n – 1} \).

Multiply both sides by \( r \):

$rS_n = ar + (a + d)r^2 + (a + 2d)r^3 + \dots + [a + (n – 1)d]r^n $

Subtracting, we get:

\[ S_n – rS_n = a(1 – r^n) + dr(1 – (n)r^{n – 1} + (n – 1)r^n)/(1 – r)^2 \]

After simplification,

\[ S_n = \dfrac{a(1 – r^n)}{1 – r} + \dfrac{dr(1 – nr^{n – 1} + (n – 1)r^n)}{(1 – r)^2} \]

Note: This is valid only for \( r \ne 1 \).

Sum to Infinity of an A.G.P. (for |r| < 1)

When \( |r| < 1 \), \( r^n \to 0 \) as \( n \to \infty \). So the sum to infinity is:

\[ S_\infty = \dfrac{a}{1 – r} + \dfrac{dr}{(1 – r)^2} \]

Special Case: A.G.P. with d = 0 (reduces to a G.P.)

If the arithmetic part is constant (i.e. \( d = 0 \)), the A.G.P. becomes a simple G.P., and:

\[ S_n = \dfrac{a(1 – r^n)}{1 – r}, \quad S_\infty = \dfrac{a}{1 – r} \]

Example Patterns Common in JEE

  • \( 1 + 2r + 3r^2 + 4r^3 + \dots \)
  • \( 5 + 7r + 9r^2 + 11r^3 + \dots \)
  • \( (a + d)r + (a + 2d)r^2 + (a + 3d)r^3 + \dots \)

All these are A.G.P.s and can be solved using the same formula.

Example 

Find the sum to infinity of the series \( 1 + 2r + 3r^2 + 4r^3 + \dots \), where \( |r| < 1 \).

▶️ Answer / Explanation

Here \( a = 1, d = 1 \).

Formula: \( S_\infty = \dfrac{a}{1 – r} + \dfrac{dr}{(1 – r)^2} \)

\( S_\infty = \dfrac{1}{1 – r} + \dfrac{r}{(1 – r)^2} = \dfrac{1 – r + r}{(1 – r)^2} = \dfrac{1}{(1 – r)^2} \)

Answer: \( S_\infty = \dfrac{1}{(1 – r)^2} \)

Example 

Find the sum of the first 5 terms of the series \( 5 + 7r + 9r^2 + 11r^3 + 13r^4 \), where \( r = \dfrac{1}{2} \).

▶️ Answer / Explanation

Here \( a = 5, d = 2, r = \dfrac{1}{2}, n = 5 \).

Formula: \( S_n = \dfrac{a(1 – r^n)}{1 – r} + \dfrac{dr(1 – nr^{n – 1} + (n – 1)r^n)}{(1 – r)^2} \)

Substitute values: \( S_5 = \dfrac{5(1 – (1/2)^5)}{1/2} + \dfrac{2(1/2)(1 – 5(1/2)^4 + 4(1/2)^5)}{(1/2)^2} \)

After simplification, \( S_5 = 9.3125 \).

Answer: \( S_5 = 9.3125 \)

Example 

Find the sum to infinity of the series \( 2 + 5r + 8r^2 + 11r^3 + \dots \), where \( |r| < 1 \).

▶️ Answer / Explanation

Here \( a = 2, d = 3 \).

Formula: \( S_\infty = \dfrac{a}{1 – r} + \dfrac{dr}{(1 – r)^2} \)

\( S_\infty = \dfrac{2}{1 – r} + \dfrac{3r}{(1 – r)^2} \)

Combine: \( S_\infty = \dfrac{2(1 – r) + 3r}{(1 – r)^2} = \dfrac{2 + r}{(1 – r)^2} \)

Answer: \( S_\infty = \dfrac{2 + r}{(1 – r)^2} \)

Special Infinite Series Results (Very Useful in JEE)

  • \( 1 + r + r^2 + r^3 + \dots = \dfrac{1}{1 – r}, \quad |r| < 1 \)
  • \( 1 + 2r + 3r^2 + 4r^3 + \dots = \dfrac{1}{(1 – r)^2}, \quad |r| < 1 \)
  • \( 1 + 4r + 9r^2 + 16r^3 + \dots = \dfrac{1 + r}{(1 – r)^3}, \quad |r| < 1 \)

Key Takeaways for JEE:

  • A.G.P. combines A.P. and G.P. patterns — use the formula derived from multiplying by \( r \) and subtracting.
  • For infinite A.G.P. → always check \( |r| < 1 \).
  • Memorize \( S_\infty = \dfrac{a}{1 – r} + \dfrac{dr}{(1 – r)^2} \).
  • Series like \( 1 + 2r + 3r^2 + \dots \) directly sum to \( \dfrac{1}{(1 – r)^2} \).
  • Commonly appears in JEE under mixed series, limits, and sigma-notation problems.

Shortcut Recap Table

Series TypeSum (Finite)Sum (Infinite)
G.P.\( S_n = \dfrac{a(1 – r^n)}{1 – r} \)\( S_\infty = \dfrac{a}{1 – r} \)
A.G.P.\( S_n = \dfrac{a(1 – r^n)}{1 – r} + \dfrac{dr(1 – nr^{n – 1} + (n – 1)r^n)}{(1 – r)^2} \)\( S_\infty = \dfrac{a}{1 – r} + \dfrac{dr}{(1 – r)^2} \)

Sigma (Σ) Notation and Summation of Series (A.P., G.P., and A.G.P.)

The symbol \( \Sigma \) (capital sigma) represents the sum of a sequence of terms.

$ \sum_{r=1}^{n} a_r = a_1 + a_2 + a_3 + \dots + a_n $

Here, \( a_r \) is the general term, and the index \( r \) varies from 1 to \( n \).

Basic Sigma Formulas (Very Important)

FormulaSummation Value
\( \displaystyle \sum_{r=1}^{n} 1 \)\( n \)
\( \displaystyle \sum_{r=1}^{n} r \)\( \dfrac{n(n + 1)}{2} \)
\( \displaystyle \sum_{r=1}^{n} r^2 \)\( \dfrac{n(n + 1)(2n + 1)}{6} \)
\( \displaystyle \sum_{r=1}^{n} r^3 \)\( \left[\dfrac{n(n + 1)}{2}\right]^2 \)

General Rule: $ \sum_{r=1}^{n} (a + br + cr^2 + \dots) = a\sum 1 + b\sum r + c\sum r^2 + \dots $

 Summation of an Arithmetic Series (A.P.)

If the series is in A.P.: $ a,\, a + d,\, a + 2d,\, \dots,\, a + (n – 1)d $ then,

$ \sum_{r=1}^{n} (a + (r – 1)d) = \dfrac{n}{2}[2a + (n – 1)d] $

Summation of a Geometric Series (G.P.)

If the series is in G.P.: $ a,\, ar,\, ar^2,\, ar^3,\, \dots $ then,

$ \sum_{r=1}^{n} ar^{r – 1} = \dfrac{a(r^n – 1)}{r – 1}, \quad (r \ne 1) $

and if \( |r| < 1 \): $ S_\infty = \dfrac{a}{1 – r} $

 Summation of an Arithmetic–Geometric Series (A.G.P.)

Series of the form: $ a + (a + d)r + (a + 2d)r^2 + \dots $ have the sum:

$ S_n = \dfrac{a(1 – r^n)}{1 – r} + \dfrac{dr(1 – nr^{n – 1} + (n – 1)r^n)}{(1 – r)^2} $

and if \( |r| < 1 \):

$ S_\infty = \dfrac{a}{1 – r} + \dfrac{dr}{(1 – r)^2} $

 Properties of Sigma Notation

  • \( \displaystyle \sum_{r=1}^{n} (a_r + b_r) = \sum a_r + \sum b_r \)
  • \( \displaystyle \sum_{r=1}^{n} ka_r = k\sum a_r \)
  • \( \displaystyle \sum_{r=1}^{n} (r + 1) = \sum r + \sum 1 = \dfrac{n(n + 1)}{2} + n \)
  • \( \displaystyle \sum_{r=1}^{n} (n – r + 1) = \sum_{r=1}^{n} r = \dfrac{n(n + 1)}{2} \)

Shortcut Sigma Expansions (for Quick JEE Solving)

  • \( \displaystyle \sum_{r=1}^{n} (a + br) = na + b\dfrac{n(n + 1)}{2} \)
  • \( \displaystyle \sum_{r=1}^{n} (ar + br^2) = a\dfrac{n(n + 1)}{2} + b\dfrac{n(n + 1)(2n + 1)}{6} \)
  • \( \displaystyle \sum_{r=1}^{n} r(r + 1) = \dfrac{n(n + 1)(n + 2)}{3} \)
  • \( \displaystyle \sum_{r=1}^{n} r(r – 1) = \dfrac{n(n + 1)(n – 1)}{3} \)

Key Takeaways for JEE:

  • Break complex sums into known forms using basic Σ formulas.
  • Use Σ identities to simplify polynomial and mixed series.
  • Always check for G.P. or A.G.P. patterns before expanding manually.
  • For infinite geometric or A.G.P. series, ensure \( |r| < 1 \) for convergence.
  • Remember the power sum formulas — they appear often in JEE algebra and calculus limits.

 Common JEE Mistakes to Avoid

  • Forgetting to apply limits correctly when starting from \( r = 0 \) or another index.
  • Using A.P. formulas for geometric or mixed progressions.
  • For infinite sums, forgetting to verify \( |r| < 1 \).

Example 

Evaluate \( \displaystyle \sum_{r=1}^{10} (3r + 2) \).

▶️ Answer / Explanation

\( \sum (3r + 2) = 3\sum r + 2\sum 1 \)

\( = 3\left[\dfrac{10(11)}{2}\right] + 2(10) = 3(55) + 20 = 185 \)

Answer: 185

Example 

Find \( \displaystyle \sum_{r=1}^{5} (r^2 + 2r) \).

▶️ Answer / Explanation

\( \sum (r^2 + 2r) = \sum r^2 + 2\sum r \)

\( = \dfrac{5(6)(11)}{6} + 2\left[\dfrac{5(6)}{2}\right] = 55 + 30 = 85 \)

Answer: 85

Example 

Find the sum to infinity of the series \( 3 + 5r + 7r^2 + 9r^3 + \dots \), where \( |r| < 1 \).

▶️ Answer / Explanation

Here \( a = 3, d = 2 \).

Formula: \( S_\infty = \dfrac{a}{1 – r} + \dfrac{dr}{(1 – r)^2} \)

\( S_\infty = \dfrac{3}{1 – r} + \dfrac{2r}{(1 – r)^2} = \dfrac{3(1 – r) + 2r}{(1 – r)^2} = \dfrac{3 – r}{(1 – r)^2} \)

Answer: \( S_\infty = \dfrac{3 – r}{(1 – r)^2} \)

Scroll to Top