Home / IIT- JEE / IIT-JEE Main / Unit 7- Derivatives of  Function- Study Notes

IIT JEE Main Maths -Unit 7- Derivatives of  Function- Study Notes-New Syllabus

IIT JEE Main Maths -Unit 7- Derivatives of  Function – Study Notes – New syllabus

IIT JEE Main Maths -Unit 7- Derivatives of  Function – Study Notes -IIT JEE Main Maths – per latest Syllabus.

Key Concepts:

  • Derivatives of Standard Functions

IIT JEE Main Maths -Study Notes – All Topics

Derivatives of Standard Functions

Polynomial Functions

If \( f(x) = x^n \), where \( n \) is any real number, then:

$ \dfrac{d}{dx}(x^n) = n x^{n – 1} $

Example 

Find \( \dfrac{d}{dx}(x^5) \).

▶️ Answer / Explanation

\( \dfrac{d}{dx}(x^5) = 5x^4 \).

Answer: \( 5x^4 \)

Example 

Find \( \dfrac{d}{dx}(3x^4 – 5x^2 + 2x – 7) \).

▶️ Answer / Explanation

Apply power rule term by term:

\( = 3(4x^3) – 5(2x) + 2 – 0 = 12x^3 – 10x + 2 \).

Answer: \( 12x^3 – 10x + 2 \)

Trigonometric Functions

Standard derivatives:

FunctionDerivative
\( \sin x \)\( \cos x \)
\( \cos x \)\( -\sin x \)
\( \tan x \)\( \sec^2 x \)
\( \cot x \)\( -\csc^2 x \)
\( \sec x \)\( \sec x \tan x \)
\( \csc x \)\( -\csc x \cot x \)

Example 

Find \( \dfrac{d}{dx}(\sin x + \cos x) \).

▶️ Answer / Explanation

\( \dfrac{d}{dx}(\sin x) = \cos x, \; \dfrac{d}{dx}(\cos x) = -\sin x \).

Answer: \( \cos x – \sin x \)

Example 

Find \( \dfrac{d}{dx}(\tan x \cdot \sec x) \).

▶️ Answer / Explanation

Use product rule:

\( (\tan x \sec x)’ = (\tan x)’ \sec x + \tan x (\sec x)’ \)

\( = \sec^2 x \sec x + \tan x (\sec x \tan x) = \sec^3 x + \sec x \tan^2 x \)

Answer: \( \sec^3 x + \sec x \tan^2 x \)

Exponential Functions

Standard results:

  • \( \dfrac{d}{dx}(e^x) = e^x \)
  • \( \dfrac{d}{dx}(a^x) = a^x \ln a \)

Example 

Find \( \dfrac{d}{dx}(e^x + 3^x) \).

▶️ Answer / Explanation

\( \dfrac{d}{dx}(e^x) = e^x \), \( \dfrac{d}{dx}(3^x) = 3^x \ln 3 \).

Answer: \( e^x + 3^x \ln 3 \)

Example 

Find \( \dfrac{d}{dx}(e^{2x^2}) \).

▶️ Answer / Explanation

Use chain rule: \( f(x) = e^{g(x)} \Rightarrow f'(x) = e^{g(x)} g'(x) \).

Here, \( g(x) = 2x^2 \Rightarrow g'(x) = 4x \).

Answer: \( 4x e^{2x^2} \)

Logarithmic Functions

Standard derivatives:

  • \( \dfrac{d}{dx}(\ln x) = \dfrac{1}{x} \)
  • \( \dfrac{d}{dx}(\log_a x) = \dfrac{1}{x \ln a} \)

Example

Find \( \dfrac{d}{dx}(\ln x) \).

▶️ Answer / Explanation

\( \dfrac{d}{dx}(\ln x) = \dfrac{1}{x} \).

Answer: \( \dfrac{1}{x} \)

Example 

Find \( \dfrac{d}{dx}(\ln(3x^2 + 2)) \).

▶️ Answer / Explanation

Use chain rule: \( \dfrac{1}{3x^2 + 2} \cdot \dfrac{d}{dx}(3x^2 + 2) = \dfrac{6x}{3x^2 + 2} \).

Answer: \( \dfrac{6x}{3x^2 + 2} \)

 Inverse Trigonometric Functions

Standard results:

FunctionDerivative
\( \sin^{-1} x \)\( \dfrac{1}{\sqrt{1 – x^2}} \)
\( \cos^{-1} x \)\( -\dfrac{1}{\sqrt{1 – x^2}} \)
\( \tan^{-1} x \)\( \dfrac{1}{1 + x^2} \)
\( \cot^{-1} x \)\( -\dfrac{1}{1 + x^2} \)
\( \sec^{-1} x \)\( \dfrac{1}{|x|\sqrt{x^2 – 1}} \)
\( \csc^{-1} x \)\( -\dfrac{1}{|x|\sqrt{x^2 – 1}} \)

Example

Find \( \dfrac{d}{dx}(\sin^{-1} x) \).

▶️ Answer / Explanation

\( \dfrac{d}{dx}(\sin^{-1} x) = \dfrac{1}{\sqrt{1 – x^2}} \).

Answer: \( \dfrac{1}{\sqrt{1 – x^2}} \)

Example 

Find \( \dfrac{d}{dx}(\tan^{-1}(3x)) \).

▶️ Answer / Explanation

Using chain rule: \( \dfrac{1}{1 + (3x)^2} \cdot 3 = \dfrac{3}{1 + 9x^2} \).

Answer: \( \dfrac{3}{1 + 9x^2} \)

Quick Summary Table (for Revision)

CategoryKey Formula
Polynomial\( \dfrac{d}{dx}(x^n) = n x^{n – 1} \)
Trigonometric\( \dfrac{d}{dx}(\sin x) = \cos x, \; \dfrac{d}{dx}(\cos x) = -\sin x, \; \dots \)
Exponential\( \dfrac{d}{dx}(e^x) = e^x, \; \dfrac{d}{dx}(a^x) = a^x \ln a \)
Logarithmic\( \dfrac{d}{dx}(\ln x) = \dfrac{1}{x} \)
Inverse Trig\( \dfrac{d}{dx}(\sin^{-1} x) = \dfrac{1}{\sqrt{1 – x^2}}, \dots \)
Scroll to Top