Home / IIT- JEE / IIT-JEE Main / Unit 7- Implicit and parametric differentiation- Study Notes

IIT JEE Main Maths -Unit 7- Implicit and parametric differentiation- Study Notes-New Syllabus

IIT JEE Main Maths -Unit 7- Implicit and parametric differentiation – Study Notes – New syllabus

IIT JEE Main Maths -Unit 7- Implicit and parametric differentiation – Study Notes -IIT JEE Main Maths – per latest Syllabus.

Key Concepts:

  • Derivatives of Implicit, Parametric, and Inverse Trigonometric Functions

IIT JEE Main Maths -Study Notes – All Topics

Derivatives of Implicit, Parametric, and Inverse Trigonometric Functions

Implicit Differentiation

When \( y \) is not expressed explicitly as a function of \( x \), but both \( x \) and \( y \) are mixed in the same equation, we differentiate both sides with respect to \( x \), treating \( y \) as a function of \( x \).

Then use the chain rule: $ \dfrac{d}{dx}(y^n) = n y^{n-1} \dfrac{dy}{dx} $

 

Steps:

  1. Differentiate both sides of the given equation with respect to \( x \).
  2. Apply chain rule for terms containing \( y \).
  3. Collect all \( \dfrac{dy}{dx} \) terms on one side.
  4. Solve for \( \dfrac{dy}{dx} \).

Example 

Find \( \dfrac{dy}{dx} \) if \( x^2 + y^2 = 25 \).

▶️ Answer / Explanation

Differentiating both sides w.r.t. \( x \):

\( 2x + 2y\dfrac{dy}{dx} = 0 \)

\( \Rightarrow \dfrac{dy}{dx} = -\dfrac{x}{y} \)

Answer: \( \dfrac{dy}{dx} = -\dfrac{x}{y} \)

Example 

Find \( \dfrac{dy}{dx} \) if \( xy + y^2 = 10 \).

▶️ Answer / Explanation

Differentiating both sides w.r.t. \( x \):

\( x\dfrac{dy}{dx} + y + 2y\dfrac{dy}{dx} = 0 \)

\( \Rightarrow \dfrac{dy}{dx}(x + 2y) = -y \)

\( \Rightarrow \dfrac{dy}{dx} = -\dfrac{y}{x + 2y} \)

Answer: \( \dfrac{dy}{dx} = -\dfrac{y}{x + 2y} \)

Parametric Differentiation

When both \( x \) and \( y \) are expressed in terms of another variable (parameter) \( t \), we use the formula:

$ \dfrac{dy}{dx} = \dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}} $

Steps:

  1. Find \( \dfrac{dx}{dt} \) and \( \dfrac{dy}{dt} \).
  2. Then take the ratio \( \dfrac{dy}{dx} = \dfrac{dy/dt}{dx/dt} \).

Example 

If \( x = \cos t \) and \( y = \sin t \), find \( \dfrac{dy}{dx} \).

▶️ Answer / Explanation

\( \dfrac{dx}{dt} = -\sin t, \; \dfrac{dy}{dt} = \cos t \).

\( \dfrac{dy}{dx} = \dfrac{\cos t}{-\sin t} = -\cot t \).

Answer: \( \dfrac{dy}{dx} = -\cot t \)

Example 

If \( x = a(\cos t + t \sin t) \) and \( y = a(\sin t – t \cos t) \), find \( \dfrac{dy}{dx} \).

▶️ Answer / Explanation

\( \dfrac{dx}{dt} = a(-\sin t + \sin t + t \cos t) = a t \cos t \)

\( \dfrac{dy}{dt} = a(\cos t – \cos t + t \sin t) = a t \sin t \)

\( \Rightarrow \dfrac{dy}{dx} = \dfrac{a t \sin t}{a t \cos t} = \tan t \)

Answer: \( \dfrac{dy}{dx} = \tan t \)

Derivatives of Inverse Trigonometric Functions

Let’s recall the standard results:

FunctionDerivativeDomain
\( \sin^{-1} x \)\( \dfrac{1}{\sqrt{1 – x^2}} \)\( |x| \le 1 \)
\( \cos^{-1} x \)\( -\dfrac{1}{\sqrt{1 – x^2}} \)\( |x| \le 1 \)
\( \tan^{-1} x \)\( \dfrac{1}{1 + x^2} \)All real \( x \)
\( \cot^{-1} x \)\( -\dfrac{1}{1 + x^2} \)All real \( x \)
\( \sec^{-1} x \)\( \dfrac{1}{|x|\sqrt{x^2 – 1}} \)\( |x| \ge 1 \)
\( \csc^{-1} x \)\( -\dfrac{1}{|x|\sqrt{x^2 – 1}} \)\( |x| \ge 1 \)

Example 

Find \( \dfrac{d}{dx}(\sin^{-1}(2x)) \).

▶️ Answer / Explanation

Using chain rule:

\( \dfrac{d}{dx}(\sin^{-1}(2x)) = \dfrac{1}{\sqrt{1 – (2x)^2}} \cdot 2 = \dfrac{2}{\sqrt{1 – 4x^2}} \).

Answer: \( \dfrac{2}{\sqrt{1 – 4x^2}} \)

Example 

Find \( \dfrac{d}{dx}(\tan^{-1}\sqrt{\dfrac{1 – x}{1 + x}}) \).

▶️ Answer / Explanation

Let \( y = \tan^{-1}\sqrt{\dfrac{1 – x}{1 + x}} \).

Using the trigonometric identity: \( \tan y = \sqrt{\dfrac{1 – x}{1 + x}} \Rightarrow \tan^2 y = \dfrac{1 – x}{1 + x} \).

\( \Rightarrow x = \cos(2y) \). Differentiating: \( \dfrac{dx}{dy} = -2\sin(2y) \Rightarrow \dfrac{dy}{dx} = -\dfrac{1}{2\sin(2y)} \).

Since \( \sin(2y) = \dfrac{2\tan y}{1 + \tan^2 y} \), substituting gives: \( \dfrac{dy}{dx} = -\dfrac{1 + \tan^2 y}{4\tan y} \).

Substitute \( \tan y = \sqrt{\dfrac{1 – x}{1 + x}} \): Answer: \( \dfrac{dy}{dx} = -\dfrac{1}{2\sqrt{1 – x^2}} \)

Scroll to Top