Home / IIT- JEE / IIT-JEE Main / Unit 7- Real-valued functions and types- Study Notes

IIT JEE Main Maths -Unit 7- Real-valued functions and types- Study Notes-New Syllabus

IIT JEE Main Maths -Unit 7- Real-valued functions and types – Study Notes – New syllabus

IIT JEE Main Maths -Unit 7- Real-valued functions and types – Study Notes -IIT JEE Main Maths – per latest Syllabus.

Key Concepts:

  • Real-Valued Functions and Their Types
  • Domain and Range of Real-Valued Functions

IIT JEE Main Maths -Study Notes – All Topics

Real-Valued Functions and Their Types

A function is a special type of relation where each element in the domain is associated with exactly one element in the co-domain.

$ f: A \to B \text{ is a function if for every } a \in A, \text{ there exists exactly one } b \in B \text{ such that } f(a) = b. $

Here,

  • Domain: Set of all possible input values.
  • Co-domain: Set from which output values are taken.
  • Range: Set of all actual output values.

Real-Valued Function

A function \( f \) is called a real-valued function if:

$ f: A \to \mathbb{R}, \quad \text{where both domain and range are subsets of } \mathbb{R}. $

That means both inputs and outputs are real numbers.

Examples: $ f(x) = 2x + 3, \quad g(x) = x^2 – 5x + 6, \quad h(x) = \sqrt{x} $

Representation of a Function

  • Verbal Form: e.g., “Square each real number.”
  • Algebraic Form: \( f(x) = x^2 \).
  • Graphical Form: Plot of ordered pairs \( (x, f(x)) \) on the Cartesian plane.
  • Tabular Form: Function values for discrete inputs.

Types of Real-Valued Functions (JEE Classification)          

Real-valued functions are classified based on their algebraic form and behavior:

(a) Polynomial Functions

A function of the form $ f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n $ where \( a_i \) are real constants and \( n \) is a non-negative integer.

Examples: \( f(x) = 3x^2 + 2x + 1, \quad g(x) = x^3 – 7x \)

(b) Rational Functions

Quotient of two polynomial functions.

$ f(x) = \dfrac{p(x)}{q(x)}, \quad \text{where } q(x) \ne 0 $

Example: \( f(x) = \dfrac{x^2 + 1}{x – 2} \)

Domain: All real \( x \ne 2 \).

(c) Irrational (Radical) Functions

Contain roots of polynomials.

$ f(x) = \sqrt{x}, \quad f(x) = \sqrt{x^2 + 1}, \quad f(x) = \sqrt{1 – x} $

Domain restriction: Expression inside the root must be non-negative.

(d) Modulus (Absolute Value) Function

Defined as $ f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases} $

Graph: V-shaped curve symmetric about the y-axis.

(e) Greatest Integer Function (GIF or Floor Function)

Defined as $ f(x) = [x] $ where [x] denotes the greatest integer less than or equal to x.

Examples: \([2.3] = 2, \, [-2.3] = -3\)

(f) Fractional Part Function

Defined as $ f(x) = x – [x] $

It gives the fractional part of \( x \). \(\text{Example: } f(3.7) = 0.7, \, f(-2.3) = 0.7\)

(g) Exponential Function

Defined as $ f(x) = a^x, \quad a > 0, a \ne 1 $

Examples: \( f(x) = 2^x, \, e^x, \, 10^x \)

Range: \( (0, \infty) \)

(h) Logarithmic Function

Inverse of exponential function.

$ f(x) = \log_a x, \quad a > 0, a \ne 1 $

Domain: \( x > 0 \), Range: All real numbers.

(i) Trigonometric Functions

Based on angle measurements. $ \sin x, \cos x, \tan x, \cot x, \sec x, \csc x $

Defined for all real \( x \) (except points where denominator = 0).

(j) Inverse Trigonometric Functions

Inverse of trigonometric functions with restricted domains.

Examples:

  • \( y = \sin^{-1}x, \quad x \in [-1, 1] \)
  • \( y = \tan^{-1}x, \quad x \in \mathbb{R} \)

(k) Piecewise Defined Functions

Defined by different expressions in different intervals of the domain.

Example:

$ f(x) = \begin{cases} x^2, & x \le 0 \\ x + 1, & x > 0 \end{cases} $

Example 

Find the domain and range of \( f(x) = \sqrt{x – 3} \).

▶️ Answer / Explanation

For square root to be real, \( x – 3 \ge 0 \Rightarrow x \ge 3 \).

Domain: \( [3, \infty) \)

Range: \( [0, \infty) \)

Example 

Find the domain and range of \( f(x) = \dfrac{1}{x^2 – 4} \).

▶️ Answer / Explanation

Denominator ≠ 0 ⇒ \( x^2 – 4 ≠ 0 ⇒ x ≠ ±2 \).

Domain: \( \mathbb{R} – \{-2, 2\} \)

Range: \( (-\infty, -\dfrac{1}{4}] \cup (0, \infty) \)

Example 

Find the domain of \( f(x) = \log(\sqrt{x^2 – 4}) \).

▶️ Answer / Explanation

For log function, argument > 0 ⇒ \( \sqrt{x^2 – 4} > 0 ⇒ x^2 – 4 > 0 \).

⇒ \( x < -2 \) or \( x > 2 \).

Domain: \( (-\infty, -2) \cup (2, \infty) \)

Domain and Range of Real-Valued Functions

For a real-valued function \( f: A \to \mathbb{R} \):

  • Domain: The set of all real values of \( x \) for which \( f(x) \) is defined (real).
  • Range: The set of all possible real values taken by \( f(x) \).

 Basic Rules to Find Domain

When finding the domain of \( f(x) \), ensure that all operations in the function are valid for real numbers.

Type of ExpressionCondition for Real DomainExample
Square root / Even rootExpression inside ≥ 0\( \sqrt{x – 3} \Rightarrow x \ge 3 \)
DenominatorDenominator ≠ 0\( \dfrac{1}{x – 2} \Rightarrow x \ne 2 \)
LogarithmArgument > 0\( \log(x – 1) \Rightarrow x > 1 \)
Even root inside logExpression inside root > 0\( \log(\sqrt{x – 4}) \Rightarrow x > 4 \)
Inverse TrigonometricArgument lies in valid range\( \sin^{-1}x \Rightarrow -1 \le x \le 1 \)

Techniques to Find Range

Once the domain is found, use one of these techniques to determine the range:

  • Direct substitution: For simple polynomial functions.
  • Transformation method: For shifted/scaled functions using base graphs.
  • Substitution (inverse approach): Express \( x \) in terms of \( y \) and find possible \( y \) values.
  • Using inequalities: For rational, square root, and trigonometric functions.

 Domain and Range of Common Functions

FunctionDomainRange
\( f(x) = x^2 \)\( \mathbb{R} \)\( [0, \infty) \)
\( f(x) = \sqrt{x} \)\( [0, \infty) \)\( [0, \infty) \)
\( f(x) = \dfrac{1}{x} \)\( \mathbb{R} – \{0\} \)\( \mathbb{R} – \{0\} \)
\( f(x) = e^x \)\( \mathbb{R} \)\( (0, \infty) \)
\( f(x) = \log x \)\( (0, \infty) \)\( \mathbb{R} \)
\( f(x) = \sin x \)\( \mathbb{R} \)\( [-1, 1] \)

Example

Find the domain and range of \( f(x) = \sqrt{4 – x^2} \).

▶️ Answer / Explanation

Expression inside root ≥ 0 ⇒ \( 4 – x^2 \ge 0 \Rightarrow -2 \le x \le 2 \).

For \( x = -2 \) or \( 2 \), \( f(x) = 0 \); for \( x = 0 \), \( f(0) = 2 \).

Domain: \( [-2, 2] \)

Range: \( [0, 2] \)

Example 

Find the domain and range of \( f(x) = \dfrac{1}{x^2 – 2x – 3} \).

▶️ Answer / Explanation

Denominator ≠ 0 ⇒ \( x^2 – 2x – 3 ≠ 0 \Rightarrow (x – 3)(x + 1) ≠ 0 \Rightarrow x \ne 3, -1 \).

Domain: \( \mathbb{R} – \{-1, 3\} \)

Range can be found by substituting \( y = \dfrac{1}{x^2 – 2x – 3} \) ⇒ \( x^2 – 2x – 3 = \dfrac{1}{y} \) ⇒ \( x^2 – 2x – (3 + \dfrac{1}{y}) = 0 \).

For real \( x \), discriminant ≥ 0 ⇒ \( 4 + 4(3 + \dfrac{1}{y}) \ge 0 \Rightarrow y \le -\dfrac{1}{4} \text{ or } y > 0 \).

Range: \( (-\infty, -\dfrac{1}{4}] \cup (0, \infty) \)

Example 

Find the domain and range of \( f(x) = \log(\sqrt{x^2 – 4}) \).

▶️ Answer / Explanation

Argument of log > 0 ⇒ \( \sqrt{x^2 – 4} > 0 ⇒ x^2 – 4 > 0 ⇒ x < -2 \text{ or } x > 2 \).

Domain: \( (-\infty, -2) \cup (2, \infty) \)

For range, let \( y = \log(\sqrt{x^2 – 4}) = \dfrac{1}{2}\log(x^2 – 4) \).

As \( x^2 – 4 \in (0, \infty) \), \( \log(x^2 – 4) \in (-\infty, \infty) \).

Range: \( (-\infty, \infty) \)

Scroll to Top