Home / IIT- JEE / IIT-JEE Main / Unit 8- Standard integrals (algebraic, trigonometric, exponential, logarithmic)- Study Notes

IIT JEE Main Maths -Unit 8- Standard integrals (algebraic, trigonometric, exponential, logarithmic)- Study Notes-New Syllabus

IIT JEE Main Maths -Unit 8- Standard integrals (algebraic, trigonometric, exponential, logarithmic) – Study Notes – New syllabus

IIT JEE Main Maths -Unit 8- Standard integrals (algebraic, trigonometric, exponential, logarithmic) – Study Notes -IIT JEE Main Maths – per latest Syllabus.

Key Concepts:

  • Standard Integrals : Algebraic, Trigonometric, Exponential, and Logarithmic Functions

IIT JEE Main Maths -Study Notes – All Topics

Standard Integrals — Algebraic, Trigonometric, Exponential, and Logarithmic Functions

In integration, some functions have well-known results that are used repeatedly. These are called standard integrals. Knowing these formulas helps solve most indefinite and definite integrals quickly.

Standard Integrals of Algebraic Functions

Function \( f(x) \)Integral \( \displaystyle \int f(x)\,dx \)Conditions
\( x^n \)\( \dfrac{x^{n+1}}{n+1} + C \)\( n \ne -1 \)
\( \dfrac{1}{x} \)\( \ln|x| + C \)\( x \ne 0 \)
\( \dfrac{1}{ax + b} \)\( \dfrac{1}{a}\ln|ax + b| + C \)

Standard Integrals of Trigonometric Functions

Function \( f(x) \)Integral \( \displaystyle \int f(x)\,dx \)
\( \sin x \)\( -\cos x + C \)
\( \cos x \)\( \sin x + C \)
\( \sec^2 x \)\( \tan x + C \)
\( \csc^2 x \)\( -\cot x + C \)
\( \sec x \tan x \)\( \sec x + C \)
\( \csc x \cot x \)\( -\csc x + C \)
\( \tan x \)\( \ln|\sec x| + C \)
\( \cot x \)\( \ln|\sin x| + C \)

 Standard Integrals of Exponential Functions

Function \( f(x) \)Integral \( \displaystyle \int f(x)\,dx \)
\( e^x \)\( e^x + C \)
\( a^x \)\( \dfrac{a^x}{\ln a} + C \)
\( e^{ax} \)\( \dfrac{1}{a}e^{ax} + C \)

Standard Integrals of Logarithmic and Inverse Trigonometric Functions

Function \( f(x) \)Integral \( \displaystyle \int f(x)\,dx \)
\( \dfrac{1}{1+x^2} \)\( \tan^{-1}x + C \)
\( \dfrac{1}{\sqrt{1 – x^2}} \)\( \sin^{-1}x + C \)
\( \dfrac{-1}{\sqrt{1 – x^2}} \)\( \cos^{-1}x + C \)
\( \dfrac{1}{x\sqrt{x^2 – 1}} \)\( \sec^{-1}x + C \)

Example 

Find \( \displaystyle \int (4x^3 – 2x + 5)\,dx \).

▶️ Answer / Explanation

Integrate term by term:

\( \displaystyle \int 4x^3\,dx = x^4, \quad \int -2x\,dx = -x^2, \quad \int 5\,dx = 5x \).

Answer: \( x^4 – x^2 + 5x + C \).

Example 

Find \( \displaystyle \int e^x(\sin x + \cos x)\,dx \).

▶️ Answer / Explanation

Use standard result: \( \displaystyle \int e^x(\sin x + \cos x)\,dx = e^x \sin x + C \).

(Verified by differentiating \( e^x \sin x \)).

Answer: \( e^x \sin x + C \).

Example 

Evaluate \( \displaystyle \int \dfrac{dx}{x^2 + 9} \).

▶️ Answer / Explanation

Rewrite: \( \displaystyle \int \dfrac{dx}{x^2 + 9} = \int \dfrac{dx}{(3)^2 + x^2} \).

Using standard formula: \( \displaystyle \int \dfrac{dx}{a^2 + x^2} = \dfrac{1}{a}\tan^{-1}\left(\dfrac{x}{a}\right) + C \).

Answer: \( \dfrac{1}{3}\tan^{-1}\left(\dfrac{x}{3}\right) + C \).

Scroll to Top