Digital SAT Math Practice Questions -Advanced : Lines, angles, and triangles - New Syllabus
DSAT MAth Practice questions – all topics
- Geometry and Trigonometry Weightage: 15% Questions: 5-7
- Area and volume
- Lines, angles, and triangles
- Right triangles and trigonometry
- Circles
▶️Last Minutes DSAT Math revision Sheet
DSAT MAth and English – full syllabus practice tests
In the figure, \( AC = CD \). The measure of angle \( EBC \) is \( 45^\circ \), and the measure of angle \( ACD \) is \( 104^\circ \). What is the value of \( x \)?
A) 70
B) 80
C) 83
D) 90
▶️ Answer/Explanation
Ans: C
In \( \triangle ACD \), \( AC = CD \), so \( \angle CDA = \angle CAD \). Sum of angles = \( 180^\circ \), with \( \angle ACD = 104^\circ \), so \( \angle CDA + \angle CAD = 76^\circ \), thus each = \( 38^\circ \).
In \( \triangle BDE \), \( \angle EBC = 45^\circ \), \( \angle BDE = 38^\circ \), so \( \angle DEB = 180^\circ – 45^\circ – 38^\circ = 97^\circ \).
\( \angle DEB + \angle AEB = 180^\circ \), so \( 97^\circ + x = 180^\circ \), thus \( x = 83^\circ \).
In the figure shown, points \( Q, R, S, \) and \( T \) lie on line segment \( PV \), and line segment \( RU \) intersects line segment \( SX \) at point \( W \). The measure of \( \angle SQX \) is \( 48^\circ \), the measure of \( \angle SXQ \) is \( 86^\circ \), the measure of \( \angle SWU \) is \( 85^\circ \), and the measure of \( \angle VTU \) is \( 162^\circ \). What is the measure, in degrees, of \( \angle TUR \)?
A) 110
B) 115
C) 123
D) 130
▶️ Answer/Explanation
Ans: C
In \( \triangle SQX \): \( \angle SQX = 48^\circ \), \( \angle SXQ = 86^\circ \), so \( \angle QSX = 180^\circ – 48^\circ – 86^\circ = 46^\circ \).
In \( \triangle RSW \): \( \angle SWU = 85^\circ \), so \( \angle SWR = 180^\circ – 85^\circ = 95^\circ \), and \( \angle WRS = 180^\circ – 46^\circ – 95^\circ = 39^\circ \).
In \( \triangle VTU \): \( \angle VTU = 162^\circ \), so \( \angle STU = 180^\circ – 162^\circ = 18^\circ \).
In \( \triangle RTU \): \( \angle URT = 39^\circ \), \( \angle STU = 18^\circ \), so \( \angle TUR = 180^\circ – 39^\circ – 18^\circ = 123^\circ \).