Digital SAT Math Practice Questions - Medium : Equivalent expressions - New Syllabus
DSAT MAth Practice questions – all topics
- Advanced Math Weightage: 35% Questions: 13-15
- Equivalent expressions
- Nonlinear equations in one variable and systems of equations in two variables
- Nonlinear functions
▶️Last Minutes DSAT Math revision Sheet
DSAT MAth and English – full syllabus practice tests
Which of the following is an equivalent form of \((1.5x – 2.4)^2 – (5.2x^2 – 6.4)\)?
A) \(-2.2x^2 + 16\)
B) \(-2.2x^2 + 11.2\)
C) \(-2.95x^2 – 7.2x + 12.16\)
D) \(-2.95x^2 – 7.2x + 0.64\)
▶️ Answer/Explanation
Answer: C
Expand \((1.5x – 2.4)^2\): \((1.5x – 2.4)(1.5x – 2.4) = 2.25x^2 – 3.6x – 3.6x + 5.76\).
Subtract \((5.2x^2 – 6.4)\): \((2.25x^2 – 7.2x + 5.76) – (5.2x^2 – 6.4)\).
Distribute and combine: \(2.25x^2 – 7.2x + 5.76 – 5.2x^2 + 6.4\).
Combine like terms: \((-2.95x^2) + (-7.2x) + (12.16) = -2.95x^2 – 7.2x + 12.16\).
\(\sqrt[3]{x^3 y^6}\)
Which of the following expressions is equivalent to the expression above?
A) \(y^2\)
B) \(xy^2\)
C) \(y^3\)
D) \(xy^3\)
▶️ Answer/Explanation
Answer: B
Use property \(\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}\).
Rewrite: \(\sqrt[3]{x^3} \cdot \sqrt[3]{y^6}\).
Simplify: \(x^1 \cdot y^2 = xy^2\).
Blood volume, \( V_B \), in a human can be determined using the equation \( V_B = \frac{V_P}{1 – H} \), where \( V_P \) is the plasma volume and \( H \) is the hematocrit (the fraction of blood volume that is red blood cells). Which of the following correctly expresses the hematocrit in terms of the blood volume and the plasma volume?
A) \( H = 1 – \frac{V_P}{V_B} \)
B) \( H = \frac{V_B}{V_P} \)
C) \( H = 1 + \frac{V_B}{V_P} \)
D) \( H = V_B – V_P \)
▶️ Answer/Explanation
Answer: A
Given: \( V_B = \frac{V_P}{1 – H} \).
Rearrange: \( 1 – H = \frac{V_P}{V_B} \).
Solve for \( H \): \( H = 1 – \frac{V_P}{V_B} \).
\[ q = s (r – 1)^2 \]
The given equation relates the positive numbers \(q\), \(r\), and \(s\). Which equation gives \(r\) in terms of \(q\) and \(s\), when \(r > 1\)?
A) \( r = 1 + \sqrt{\frac{q}{s}} \)
B) \( r = 1 + \frac{\sqrt{q}}{s} \)
C) \( r = -1 – \sqrt{\frac{q}{s}} \)
D) \( r = -1 – \frac{\sqrt{q}}{s} \)
▶️ Answer/Explanation
Answer: A
Given: \( q = s (r – 1)^2 \).
Divide by \( s \): \(\frac{q}{s} = (r – 1)^2\).
Take square root: \(\sqrt{\frac{q}{s}} = |r – 1|\).
Since \( r > 1 \), \( r – 1 > 0 \), so \( r – 1 = \sqrt{\frac{q}{s}} \).
Add 1: \( r = 1 + \sqrt{\frac{q}{s}} \).