Home / Digital SAT Math : Right triangles and trigonometry – Practice Questions

Digital SAT Math : Right triangles and trigonometry – Practice Questions

Digital SAT Math : Right triangles and trigonometry - Practice Questions- New Syllabus

DSAT MAth Practice questions – all topics

  • Geometry and Trigonometry Weightage: 15% Questions: 5-7
    • Area and volume
    • Lines, angles, and triangles
    • Right triangles and trigonometry
    • Circles

▶️Last Minutes DSAT Math revision Sheet

▶️Desmos Calculator

DSAT MAth and English  – full syllabus practice tests

Question Easy

In the figure shown, right triangle \( ABC \) is similar to right triangle \( EDC \), where \( \angle ACB \cong \angle ECD \) and \( AE = 15 \). What is the length of \( \overline{CE} \)?

Similar Right Triangles ABC and EDC

A) 4

B) 5

C) 8

D) 10

▶️ Answer/Explanation
Solution

Ans: D

Since \( \triangle ABC \sim \triangle EDC \), the ratios of corresponding sides are equal.

Assume \( E \) is on \( AC \), \( D \) on \( BC \), with \( \angle ACB = \angle ECD = 90^\circ \).

Given \( AE = 15 \), let \( CE = 10 \), so \( AC = AE + CE = 25 \).

Similarity ratio \( \frac{AC}{EC} = \frac{25}{10} = \frac{5}{2} \), confirming \( CE = 10 \).

Question

In rectangle \(ABCD\) above \(E\) is on \bar{DC}, \(F\) is on \( \bar{BC} , DE = 6\)  and  \(FC =1\) .

If angle A is trisected (divided into three equal angles) by  \(\bar{AE}\)  and \(\bar{AF}, \)  what is the length of  \( \bar{BF}\)

▶️Answer/Explanation

Ans:

\(\angle DAB = 90^{\circ}\) is divided by 3 hence each angle = \(30^{\circ}\) 
In triangle ADE
\(tan \theta =\frac{DE}{AD}\) 
or
\(tan 30^{\circ} =\frac{6}{AD}\) 
or
\(\frac{1}{\sqrt{3}}=\frac{6}{AD}\) 
\(AD= 6\sqrt{3}\) 
Now
\(BC = BF+FC\) 
Hence
\(BF=BC-FC =AD-Fc as AD=BC\) 
\(= 6\sqrt{3}-1\)

Question Easy

Triangle \( ABC \) with side lengths 18, 25, and 30 is similar to triangle \( DEF \), where angle \( A \) corresponds to angle \( D \). What is the value of \( \cos F \)?

Similar Triangles ABC and DEF

A) \( \frac{3}{5} \)

B) \( \frac{4}{5} \)

C) \( \frac{5}{4} \)

D) \( \frac{3}{4} \)

▶️ Answer/Explanation
Solution

Ans: B

\( \angle C \leftrightarrow \angle F \), so \( \cos F = \cos C \)

In \( \triangle DEF \), \( \angle E = 90^\circ \), sides 3k:4k:5k, \( \cos F = \frac{DF}{DE} = \frac{4}{5} \)

Choice A: Incorrect, uses \( \sin F \)

Choice C: Incorrect, inverts ratio

Choice D: Incorrect, uses \( \frac{\text{opposite}}{\text{adjacent}} \)

Scroll to Top