Home / IBDP Maths analysis and approaches Topic: SL 1.7 :Change of base HL Paper 1

IBDP Maths analysis and approaches Topic: SL 1.7 :Change of base HL Paper 1

Question

Solve the equation \(2 – {\log _3}(x + 7) = {\log _{\tfrac{1}{3}}}2x\) .

▶️Answer/Explanation

Markscheme

\({\log _3}\left( {\frac{9}{{x + 7}}} \right) = {\log _3}\frac{1}{{2x}}\)     M1M1A1

Note: Award M1 for changing to single base, M1 for incorporating the 2 into a log and A1 for a correct equation with maximum one log expression each side.

\(x + 7 = 18x\)     M1

\(x = \frac{7}{{17}}\)     A1        [5 marks] 

Question

Consider \(a = {\log _2}3 \times {\log _3}4 \times {\log _4}5 \times  \ldots  \times {\log _{31}}32\). Given that \(a \in \mathbb{Z}\), find the value of a.

▶️Answer/Explanation

Markscheme

\(\frac{{\log 3}}{{\log 2}} \times \frac{{\log 4}}{{\log 3}} \times  \ldots \times \frac{{\log 32}}{{\log 31}}\)     M1A1

\( = \frac{{\log 32}}{{\log 2}}\)     A1

\( = \frac{{5\log 2}}{{\log 2}}\)     (M1)

\( = 5\)     A1

hence \(a = 5\)

Note:     Accept the above if done in a specific base eg \({\log _2}x\).

[5 marks]

Scroll to Top