IBDP Maths AI: Topic: SL 2.3: The graph of a function: IB style Questions HL Paper 2

Question

A function is defined as \(f(x) = k\sqrt x \), with \(k > 0\) and \(x \geqslant 0\) .

(a)     Sketch the graph of \(y = f(x)\) .

(b)     Show that f is a one-to-one function.

(c)     Find the inverse function, \({f^{ – 1}}(x)\) and state its domain.

(d)     If the graphs of \(y = f(x)\) and \(y = {f^{ – 1}}(x)\) intersect at the point (4, 4) find the value of k .

(e)     Consider the graphs of \(y = f(x)\) and \(y = {f^{ – 1}}(x)\) using the value of k found in part (d).

(i)     Find the area enclosed by the two graphs.

(ii)     The line x = c cuts the graphs of \(y = f(x)\) and \(y = {f^{ – 1}}(x)\) at the points P and Q respectively. Given that the tangent to \(y = f(x)\) at point P is parallel to the tangent to \(y = {f^{ – 1}}(x)\) at point Q find the value of c .

▶️Answer/Explanation

Markscheme

(a)

    A1

Note: Award A1 for correct concavity, passing through (0, 0) and increasing.

Scales need not be there.

[1 mark]

(b)     a statement involving the application of the Horizontal Line Test or equivalent     A1

[1 mark]

(c)     \(y = k\sqrt x \)

for either \(x = k\sqrt y \) or \(x = \frac{{{y^2}}}{{{k^2}}}\)     A1

\({f^{ – 1}}(x) = \frac{{{x^2}}}{{{k^2}}}\)     A1

\({\text{dom}}\left( {{f^{ – 1}}(x)} \right) = \left[ {0,\infty } \right[\)     A1

[3 marks]

(d)     \(\frac{{{x^2}}}{{{k^2}}} = k\sqrt x \,\,\,\,\,\)or equivalent method     M1

\(k = \sqrt x \)

\(k = 2\)     A1

[2 marks]

(e)     (i)     \(A = \int_a^b {({y_1} – {y_2}){\text{d}}x} \)     (M1)

\(A = \int_0^4 {\left( {2{x^{\frac{1}{2}}} – \frac{1}{4}{x^2}} \right){\text{d}}x} \)     A1

\( = \left[ {\frac{4}{3}{x^{\frac{3}{2}}} – \frac{1}{{12}}{x^3}} \right]_0^4\)     A1

\( = \frac{{16}}{3}\)     A1

(ii)     attempt to find either \(f'(x)\) or \(({f^{ – 1}})'(x)\)     M1

\(f'(x) = \frac{1}{{\sqrt x }},{\text{ }}\left( {({f^{ – 1}})'(x) = \frac{x}{2}} \right)\)     A1A1

\(\frac{1}{{\sqrt c }} = \frac{c}{2}\)     M1

\(c = {2^{\frac{2}{3}}}\)     A1

[9 marks]

Total [16 marks]

Question

The graph of \(y = \frac{{a + x}}{{b + cx}}\) is drawn below.

 

(a)     Find the value of a, the value of b and the value of c.

(b)     Using the values of a, b and c found in part (a), sketch the graph of \(y = \left| {\frac{{b + cx}}{{a + x}}} \right|\) on the axes below, showing clearly all intercepts and asymptotes.

▶️Answer/Explanation

Markscheme

(a)     an attempt to use either asymptotes or intercepts     (M1)

\(a = – 2,{\text{ }}b = 1,{\text{ }}c = \frac{1}{2}\)     A1A1A1

(b)         A4

Note: Award A1 for both asymptotes,

A1 for both intercepts,

A1, A1 for the shape of each branch, ignoring shape at \((x = – 2)\).

[8 marks]

Question

The diagram below shows the graph of the function \(y = f(x)\) , defined for all \(x \in \mathbb{R}\),
where \(b > a > 0\) .


Consider the function \(g(x) = \frac{1}{{f(x – a) – b}}\).

a.Find the largest possible domain of the function \(g\) .[2]

b.On the axes below, sketch the graph of \(y = g(x)\) . On the graph, indicate any asymptotes and local maxima or minima, and write down their equations and coordinates.

[6]

 
▶️Answer/Explanation

Markscheme

\(f(x – a) \ne b\)     (M1)

\(x \ne 0\) and \(x \ne 2a\) (or equivalent)     A1

[2 marks]

a.

vertical asymptotes \(x = 0\), \(x = 2a\)     A1

horizontal asymptote \(y = 0\)     A1

Note: Equations must be seen to award these marks.

maximum \(\left( {a, – \frac{1}{b}} \right)\)     A1A1

Note: Award A1 for correct x-coordinate and A1 for correct y-coordinate.

one branch correct shape     A1

other 2 branches correct shape     A1

[6 marks]

b.

Question

Consider the function \(f(x) = \frac{{\ln x}}{x}\) , \(0 < x < {{\text{e}}^2}\) .

a.(i)     Solve the equation \(f'(x) = 0\) .

(ii)     Hence show the graph of \(f\) has a local maximum.

(iii)     Write down the range of the function \(f\) .[5]

b.Show that there is a point of inflexion on the graph and determine its coordinates.[5]

c.Sketch the graph of \(y = f(x)\) , indicating clearly the asymptote, x-intercept and the local maximum.[3]

d.Now consider the functions \(g(x) = \frac{{\ln \left| x \right|}}{x}\) and \(h(x) = \frac{{\ln \left| x \right|}}{{\left| x \right|}}\) , where \(0 < x < {{\text{e}}^2}\) .

(i)     Sketch the graph of \(y = g(x)\) .

(ii)     Write down the range of \(g\) .

(iii)     Find the values of \(x\) such that \(h(x) > g(x)\) .[6]

▶️Answer/Explanation

Markscheme

(i)     \(f'(x) = \frac{{x\frac{1}{x} – \ln x}}{{{x^2}}}\)     M1A1

\( = \frac{{1 – \ln x}}{{{x^2}}}\)

so \(f'(x) = 0\) when \(\ln x = 1\), i.e. \(x = {\text{e}}\)     A1

(ii)     \(f'(x) > 0\) when \(x < {\text{e}}\) and \(f'(x) < 0\) when \(x > {\text{e}}\)     R1

hence local maximum     AG

Note: Accept argument using correct second derivative.

(iii)     \(y \leqslant \frac{1}{{\text{e}}}\)     A1

[5 marks]

a.

\(f”(x) = \frac{{{x^2}\frac{{ – 1}}{x} – \left( {1 – \ln x} \right)2x}}{{{x^4}}}\)     M1

\( = \frac{{ – x – 2x + 2x\ln x}}{{{x^4}}}\)

\( = \frac{{ – 3 + 2\ln x}}{{{x^3}}}\)     A1

Note: May be seen in part (a).

\(f”(x) = 0\)     (M1)

\({ – 3 + 2\ln x = 0}\)

\(x = {{\text{e}}^{\frac{3}{2}}}\)

since \(f”(x) < 0\) when \(x < {{\text{e}}^{\frac{3}{2}}}\) and \(f”(x) > 0\) when \(x > {{\text{e}}^{\frac{3}{2}}}\)     R1

then point of inflexion \(\left( {{{\text{e}}^{\frac{3}{2}}},\frac{3}{{2{{\text{e}}^{\frac{3}{2}}}}}} \right)\)     A1

[5 marks]

b.

     A1A1A1

Note: Award A1 for the maximum and intercept, A1 for a vertical asymptote and A1 for shape (including turning concave up). 

[3 marks]

c.

(i)
     A1A1

Note: Award A1 for each correct branch.

(ii) all real values     A1

(iii)
     (M1)(A1)

Note: Award (M1)(A1) for sketching the graph of h, ignoring any graph of g.

\( – {{\text{e}}^2} < x <  – 1\) (accept \(x < – 1\) )     A1

[6 marks]

d.

Question

The random variable X has probability density function f where

\[f(x) = \left\{ {\begin{array}{*{20}{c}}
  {kx(x + 1)(2 – x),}&{0 \leqslant x \leqslant 2} \\
  {0,}&{{\text{otherwise }}{\text{.}}}
\end{array}} \right.\]

a.Sketch the graph of the function. You are not required to find the coordinates of the maximum.[1]

b.Find the value of k .[5]

▶️Answer/Explanation

Markscheme

     A1

Note: Award A1 for intercepts of 0 and 2 and a concave down curve in the given domain .

Note: Award A0 if the cubic graph is extended outside the domain [0, 2] .

[1 mark]

a.

\(\int_0^2 {kx(x + 1)(2 – x){\text{d}}x = 1} \)     (M1)

Note: The correct limits and =1 must be seen but may be seen later.

\(k\int_0^2 {( – {x^3} + {x^2} + 2x){\text{d}}x = 1} \)     A1

\(k\left[ { – \frac{1}{4}{x^4} + \frac{1}{3}{x^3} + {x^2}} \right]_0^2 = 1\)     M1

\(k\left( { – 4 + \frac{8}{3} + 4} \right) = 1\)     (A1)

\(k = \frac{3}{8}\)     A1

[5 marks]

b.
Scroll to Top